Towards systematic approach to boundary conditions in mixture and multiphasic incompressible models: Maximum Entropy principle estimate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00367597" target="_blank" >RIV/68407700:21340/23:00367597 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijengsci.2023.103902" target="_blank" >https://doi.org/10.1016/j.ijengsci.2023.103902</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijengsci.2023.103902" target="_blank" >10.1016/j.ijengsci.2023.103902</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards systematic approach to boundary conditions in mixture and multiphasic incompressible models: Maximum Entropy principle estimate
Popis výsledku v původním jazyce
The single continuum model formulation, no matter how complex the considered constitutive relations are, cannot describe important phenomena stemming from constituents' interactions. In contrast, mixture theory is a successful framework for providing thermodynamically con-sistent governing equations in the bulk allowing for the inclusion of details in the material structure and interactions. Despite its ubiquitous applications, a fundamental open problem, a framework for the assessment of boundary conditions, persisted.Our objective is to relate these boundary conditions of mixtures to those of a single continuum and, hence, derive their possible form. To obtain such an estimation, we suggest using the Maximum Entropy (MaxEnt) principle yielding the least biased estimate (when measured by the entropy) of the values of the state variables on the more detailed level based on the knowledge of the state on the less detailed level. In the case of mixtures, the total mixture quantities represent the less detailed description, whereas the quantities related to each phase of the mixture represent the more detailed level, and the mapping (projection) connecting the two levels usually follows from the conservation of total mixture quantities. Therefore, once we have entropy on the detailed level and the aforementioned projection, from the MaxEnt principle, we get the least biased estimate of the decomposition of the total mixture state variables into variables corresponding to each constituent.These estimates can be used to obtain the interfacial conditions between two mixtures: we consider the decomposition of the total mixture quantities to partial quantities on both sides of the interface independently and match the mixture quantities at the interface using classical boundary conditions for a single phase. In this way, we may connect the well-developed theory for single continuum boundary conditions to the boundary conditions in mixtures. The generality of such an approach
Název v anglickém jazyce
Towards systematic approach to boundary conditions in mixture and multiphasic incompressible models: Maximum Entropy principle estimate
Popis výsledku anglicky
The single continuum model formulation, no matter how complex the considered constitutive relations are, cannot describe important phenomena stemming from constituents' interactions. In contrast, mixture theory is a successful framework for providing thermodynamically con-sistent governing equations in the bulk allowing for the inclusion of details in the material structure and interactions. Despite its ubiquitous applications, a fundamental open problem, a framework for the assessment of boundary conditions, persisted.Our objective is to relate these boundary conditions of mixtures to those of a single continuum and, hence, derive their possible form. To obtain such an estimation, we suggest using the Maximum Entropy (MaxEnt) principle yielding the least biased estimate (when measured by the entropy) of the values of the state variables on the more detailed level based on the knowledge of the state on the less detailed level. In the case of mixtures, the total mixture quantities represent the less detailed description, whereas the quantities related to each phase of the mixture represent the more detailed level, and the mapping (projection) connecting the two levels usually follows from the conservation of total mixture quantities. Therefore, once we have entropy on the detailed level and the aforementioned projection, from the MaxEnt principle, we get the least biased estimate of the decomposition of the total mixture state variables into variables corresponding to each constituent.These estimates can be used to obtain the interfacial conditions between two mixtures: we consider the decomposition of the total mixture quantities to partial quantities on both sides of the interface independently and match the mixture quantities at the interface using classical boundary conditions for a single phase. In this way, we may connect the well-developed theory for single continuum boundary conditions to the boundary conditions in mixtures. The generality of such an approach
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-22092S" target="_blank" >GA20-22092S: Víceškálová termodynamika: okrajové podmínky, integrace a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Engineering Science
ISSN
0020-7225
e-ISSN
1879-2197
Svazek periodika
191
Číslo periodika v rámci svazku
103902
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001024479100001
EID výsledku v databázi Scopus
2-s2.0-85163441657