Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards systematic approach to boundary conditions in mixture and multiphasic incompressible models: Maximum Entropy principle estimate

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00367597" target="_blank" >RIV/68407700:21340/23:00367597 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ijengsci.2023.103902" target="_blank" >https://doi.org/10.1016/j.ijengsci.2023.103902</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijengsci.2023.103902" target="_blank" >10.1016/j.ijengsci.2023.103902</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards systematic approach to boundary conditions in mixture and multiphasic incompressible models: Maximum Entropy principle estimate

  • Popis výsledku v původním jazyce

    The single continuum model formulation, no matter how complex the considered constitutive relations are, cannot describe important phenomena stemming from constituents' interactions. In contrast, mixture theory is a successful framework for providing thermodynamically con-sistent governing equations in the bulk allowing for the inclusion of details in the material structure and interactions. Despite its ubiquitous applications, a fundamental open problem, a framework for the assessment of boundary conditions, persisted.Our objective is to relate these boundary conditions of mixtures to those of a single continuum and, hence, derive their possible form. To obtain such an estimation, we suggest using the Maximum Entropy (MaxEnt) principle yielding the least biased estimate (when measured by the entropy) of the values of the state variables on the more detailed level based on the knowledge of the state on the less detailed level. In the case of mixtures, the total mixture quantities represent the less detailed description, whereas the quantities related to each phase of the mixture represent the more detailed level, and the mapping (projection) connecting the two levels usually follows from the conservation of total mixture quantities. Therefore, once we have entropy on the detailed level and the aforementioned projection, from the MaxEnt principle, we get the least biased estimate of the decomposition of the total mixture state variables into variables corresponding to each constituent.These estimates can be used to obtain the interfacial conditions between two mixtures: we consider the decomposition of the total mixture quantities to partial quantities on both sides of the interface independently and match the mixture quantities at the interface using classical boundary conditions for a single phase. In this way, we may connect the well-developed theory for single continuum boundary conditions to the boundary conditions in mixtures. The generality of such an approach

  • Název v anglickém jazyce

    Towards systematic approach to boundary conditions in mixture and multiphasic incompressible models: Maximum Entropy principle estimate

  • Popis výsledku anglicky

    The single continuum model formulation, no matter how complex the considered constitutive relations are, cannot describe important phenomena stemming from constituents' interactions. In contrast, mixture theory is a successful framework for providing thermodynamically con-sistent governing equations in the bulk allowing for the inclusion of details in the material structure and interactions. Despite its ubiquitous applications, a fundamental open problem, a framework for the assessment of boundary conditions, persisted.Our objective is to relate these boundary conditions of mixtures to those of a single continuum and, hence, derive their possible form. To obtain such an estimation, we suggest using the Maximum Entropy (MaxEnt) principle yielding the least biased estimate (when measured by the entropy) of the values of the state variables on the more detailed level based on the knowledge of the state on the less detailed level. In the case of mixtures, the total mixture quantities represent the less detailed description, whereas the quantities related to each phase of the mixture represent the more detailed level, and the mapping (projection) connecting the two levels usually follows from the conservation of total mixture quantities. Therefore, once we have entropy on the detailed level and the aforementioned projection, from the MaxEnt principle, we get the least biased estimate of the decomposition of the total mixture state variables into variables corresponding to each constituent.These estimates can be used to obtain the interfacial conditions between two mixtures: we consider the decomposition of the total mixture quantities to partial quantities on both sides of the interface independently and match the mixture quantities at the interface using classical boundary conditions for a single phase. In this way, we may connect the well-developed theory for single continuum boundary conditions to the boundary conditions in mixtures. The generality of such an approach

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-22092S" target="_blank" >GA20-22092S: Víceškálová termodynamika: okrajové podmínky, integrace a aplikace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Engineering Science

  • ISSN

    0020-7225

  • e-ISSN

    1879-2197

  • Svazek periodika

    191

  • Číslo periodika v rámci svazku

    103902

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    001024479100001

  • EID výsledku v databázi Scopus

    2-s2.0-85163441657