Ensemble Models for Calorimeter Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00374144" target="_blank" >RIV/68407700:21340/23:00374144 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1742-6596/2438/1/012080" target="_blank" >https://doi.org/10.1088/1742-6596/2438/1/012080</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/2438/1/012080" target="_blank" >10.1088/1742-6596/2438/1/012080</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ensemble Models for Calorimeter Simulations
Popis výsledku v původním jazyce
Foreseen increasing demand for simulations of particle transport through detectors in High Energy Physics motivated the search for faster alternatives to Monte Carlo-based simulations. Deep learning approaches provide promising results in terms of speed up and accuracy, among which generative adversarial networks (GANs) appear to be particularly successful in reproducing realistic detector data. However, the GANs tend to suffer from different issues such as not reproducing the full variability of the training data, missing modes problem, and unstable convergence. Various ensemble techniques applied to image generation proved that these issues can be moderated either by deploying multiple generators or multiple discriminators. This work follows a development of a GAN with two-dimensional convolutions that reproduces 3D images of an electromagnetic calorimeter. We build on top of this model and construct an ensemble of generators. With each new generator, the ensemble shows better agreement with the Monte Carlo images in terms of shower shapes and the sampling fraction.
Název v anglickém jazyce
Ensemble Models for Calorimeter Simulations
Popis výsledku anglicky
Foreseen increasing demand for simulations of particle transport through detectors in High Energy Physics motivated the search for faster alternatives to Monte Carlo-based simulations. Deep learning approaches provide promising results in terms of speed up and accuracy, among which generative adversarial networks (GANs) appear to be particularly successful in reproducing realistic detector data. However, the GANs tend to suffer from different issues such as not reproducing the full variability of the training data, missing modes problem, and unstable convergence. Various ensemble techniques applied to image generation proved that these issues can be moderated either by deploying multiple generators or multiple discriminators. This work follows a development of a GAN with two-dimensional convolutions that reproduces 3D images of an electromagnetic calorimeter. We build on top of this model and construct an ensemble of generators. With each new generator, the ensemble shows better agreement with the Monte Carlo images in terms of shower shapes and the sampling fraction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023061" target="_blank" >LM2023061: Výzkumná infrastruktura pro experimenty ve Fermilab</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics Conference Series
ISBN
—
ISSN
1742-6588
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IOP Institute of Physics
Místo vydání
Bristol
Místo konání akce
ELECTR NETWORK
Datum konání akce
29. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001026601300080