Magnetization properties, super-stable points, and cycles of antiferromagnetic spin-1 diamond chains with nodal-nodal interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00374148" target="_blank" >RIV/68407700:21340/23:00374148 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1742-6596/2667/1/012062" target="_blank" >https://doi.org/10.1088/1742-6596/2667/1/012062</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/2667/1/012062" target="_blank" >10.1088/1742-6596/2667/1/012062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetization properties, super-stable points, and cycles of antiferromagnetic spin-1 diamond chains with nodal-nodal interactions
Popis výsledku v původním jazyce
This study is devoted to the discovery of super-stable points and cycles in antiferromagnetic Ising and Ising-Heisenberg models with spin 1 on diamond chains with nodal-nodal interactions. These phenomena are important for understanding the complex behavior of magnetic systems. We specifically investigate their connection with magnetization plateaus, which serve as critical indicators of the model's characteristics. Employing the recurrence relations technique, we derive multidimensional rational mappings that give insights about the statistical properties of the models. Carefully examining the stability properties of these mappings, in particular, by analyzing the maximum Lyapunov exponent, we have revealed the complex relationship between the magnetization plateau and dynamic properties. Throughout our extensive research, we have comprehensively studied the existence and behavior of super-stable points and cycles for various parameter configurations in spin-1 models on the diamond chains. By highlighting the basic properties of dynamics and stability, our research advances a fundamental understanding of complex magnetic systems and their fascinating properties.
Název v anglickém jazyce
Magnetization properties, super-stable points, and cycles of antiferromagnetic spin-1 diamond chains with nodal-nodal interactions
Popis výsledku anglicky
This study is devoted to the discovery of super-stable points and cycles in antiferromagnetic Ising and Ising-Heisenberg models with spin 1 on diamond chains with nodal-nodal interactions. These phenomena are important for understanding the complex behavior of magnetic systems. We specifically investigate their connection with magnetization plateaus, which serve as critical indicators of the model's characteristics. Employing the recurrence relations technique, we derive multidimensional rational mappings that give insights about the statistical properties of the models. Carefully examining the stability properties of these mappings, in particular, by analyzing the maximum Lyapunov exponent, we have revealed the complex relationship between the magnetization plateau and dynamic properties. Throughout our extensive research, we have comprehensively studied the existence and behavior of super-stable points and cycles for various parameter configurations in spin-1 models on the diamond chains. By highlighting the basic properties of dynamics and stability, our research advances a fundamental understanding of complex magnetic systems and their fascinating properties.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
XII International Symposium on Quantum THeory and Symmetries (QTS12)
ISBN
—
ISSN
1742-6596
e-ISSN
1742-6596
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
IOP Publishing Ltd
Místo vydání
Bristol
Místo konání akce
Praha
Datum konání akce
24. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—