Renyi entropy based design of heavy tailed distribution for return of financial assets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00374887" target="_blank" >RIV/68407700:21340/24:00374887 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.physa.2024.129531" target="_blank" >https://doi.org/10.1016/j.physa.2024.129531</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2024.129531" target="_blank" >10.1016/j.physa.2024.129531</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Renyi entropy based design of heavy tailed distribution for return of financial assets
Popis výsledku v původním jazyce
It is well-known that returns of financial assets exhibit heavy tail property and there has been no distribution which can reliably capture this characteristic so far. To contribute to the solution of this problem, we derive a new heavy tail distribution using the maximum entropy principle for Renyi entropy under the absolute moment constraints. Our newly derived distribution with two shape parameters forms a family of distributions. They are smooth, scaleable, symmetric and may be heavy tailed if their shape parameter attains the appropriate value. As a result, parameters of this distribution can be estimated by maximum likelihood estimation technique. The ability of the derived distribution to model the heavy tail property of financial assets is verified on a range of financial instruments. The results we obtained show that it can be a better option for modeling the returns of financial assets compared to other well-known heavy tailed distributions
Název v anglickém jazyce
Renyi entropy based design of heavy tailed distribution for return of financial assets
Popis výsledku anglicky
It is well-known that returns of financial assets exhibit heavy tail property and there has been no distribution which can reliably capture this characteristic so far. To contribute to the solution of this problem, we derive a new heavy tail distribution using the maximum entropy principle for Renyi entropy under the absolute moment constraints. Our newly derived distribution with two shape parameters forms a family of distributions. They are smooth, scaleable, symmetric and may be heavy tailed if their shape parameter attains the appropriate value. As a result, parameters of this distribution can be estimated by maximum likelihood estimation technique. The ability of the derived distribution to model the heavy tail property of financial assets is verified on a range of financial instruments. The results we obtained show that it can be a better option for modeling the returns of financial assets compared to other well-known heavy tailed distributions
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica A: Statistical Mechanics and Its Applications
ISSN
0378-4371
e-ISSN
1873-2119
Svazek periodika
637
Číslo periodika v rámci svazku
Březen
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001172352100001
EID výsledku v databázi Scopus
2-s2.0-85183105183