Graded jet geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00375583" target="_blank" >RIV/68407700:21340/24:00375583 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.geomphys.2024.105250" target="_blank" >https://doi.org/10.1016/j.geomphys.2024.105250</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2024.105250" target="_blank" >10.1016/j.geomphys.2024.105250</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graded jet geometry
Popis výsledku v původním jazyce
Jet manifolds and vector bundles allow one to employ tools of differential geometry to study differential equations, for example those arising as equations of motions in physics. They are necessary for a geometrical formulation of Lagrangian mechanics and the calculus of variations. It is thus only natural to require their generalization in geometry of Z-graded manifolds and vector bundles. Our aim is to construct the k-th order jet bundle J^k_E of an arbitrary Z-graded vector bundle E over an arbitrary Z-graded manifold M. We do so by directly constructing its sheaf of sections, which allows one to quickly prove all its usual properties. It turns out that it is convenient to start with the construction of the graded vector bundle of k-th order (linear) differential operators D^k_E on E. In the process, we discuss (principal) symbol maps and a subclass of differential operators whose symbols correspond to completely symmetric k-vector fields, thus finding a graded version of Atiyah Lie algebroid. Necessary rudiments of geometry of Z-graded vector bundles over Z-graded manifolds are recalled.
Název v anglickém jazyce
Graded jet geometry
Popis výsledku anglicky
Jet manifolds and vector bundles allow one to employ tools of differential geometry to study differential equations, for example those arising as equations of motions in physics. They are necessary for a geometrical formulation of Lagrangian mechanics and the calculus of variations. It is thus only natural to require their generalization in geometry of Z-graded manifolds and vector bundles. Our aim is to construct the k-th order jet bundle J^k_E of an arbitrary Z-graded vector bundle E over an arbitrary Z-graded manifold M. We do so by directly constructing its sheaf of sections, which allows one to quickly prove all its usual properties. It turns out that it is convenient to start with the construction of the graded vector bundle of k-th order (linear) differential operators D^k_E on E. In the process, we discuss (principal) symbol maps and a subclass of differential operators whose symbols correspond to completely symmetric k-vector fields, thus finding a graded version of Atiyah Lie algebroid. Necessary rudiments of geometry of Z-graded vector bundles over Z-graded manifolds are recalled.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF24-10031K" target="_blank" >GF24-10031K: Gradovaná diferenciální geometrie a její aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
1879-1662
Svazek periodika
203
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
31
Strana od-do
—
Kód UT WoS článku
001258966100001
EID výsledku v databázi Scopus
2-s2.0-85196032932