Search and state transfer between hubs by quantum walks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00376730" target="_blank" >RIV/68407700:21340/24:00376730 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevA.110.022422" target="_blank" >https://doi.org/10.1103/PhysRevA.110.022422</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.110.022422" target="_blank" >10.1103/PhysRevA.110.022422</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Search and state transfer between hubs by quantum walks
Popis výsledku v původním jazyce
Search and state transfer between hubs, i.e., fully connected vertices, on otherwise arbitrary connected graph is investigated. Motivated by a recent result of Razzoli et al. [J. Phys. A: Math. Theor. 55, 265303 (2022)] on the universality of hubs in continuous-time quantum walks and spatial search, we extend the investigation to state transfer and also to the discrete-time case. We show that the continuous-time quantum walk allows for perfect state transfer between multiple hubs if the numbers of senders and receivers are close. Turning to the discrete-time case, we show that the search for hubs is successful provided that the initial state is locally modified to account for a degree of each individual vertex. Concerning state transfer using discrete-time quantum walk, it is shown that between a single sender and a single receiver one can transfer two orthogonal states in the same run time. Hence, it is possible to transfer an arbitrary quantum state of a qubit between two hubs. In addition, if the sender and the receiver know each other location, another linearly independent state can be transferred, allowing for exchange of a qutrit state. Finally, we consider the case of transfer between multiple senders and receivers. In this case we cannot transfer specific quantum states. Nevertheless, quantum walker can be transferred with high probability in two regimes-either when there is a similar number of senders and receivers, which is the same as for the continuous-time quantum walk, or when the number of receivers is considerably larger than the number of senders. Our investigation is based on dimensional reduction utilizing the invariant subspaces of the respective evolutions and the fact that for the appropriate choice of the loop weights the problem can be reduced to the complete graph with loops.
Název v anglickém jazyce
Search and state transfer between hubs by quantum walks
Popis výsledku anglicky
Search and state transfer between hubs, i.e., fully connected vertices, on otherwise arbitrary connected graph is investigated. Motivated by a recent result of Razzoli et al. [J. Phys. A: Math. Theor. 55, 265303 (2022)] on the universality of hubs in continuous-time quantum walks and spatial search, we extend the investigation to state transfer and also to the discrete-time case. We show that the continuous-time quantum walk allows for perfect state transfer between multiple hubs if the numbers of senders and receivers are close. Turning to the discrete-time case, we show that the search for hubs is successful provided that the initial state is locally modified to account for a degree of each individual vertex. Concerning state transfer using discrete-time quantum walk, it is shown that between a single sender and a single receiver one can transfer two orthogonal states in the same run time. Hence, it is possible to transfer an arbitrary quantum state of a qubit between two hubs. In addition, if the sender and the receiver know each other location, another linearly independent state can be transferred, allowing for exchange of a qutrit state. Finally, we consider the case of transfer between multiple senders and receivers. In this case we cannot transfer specific quantum states. Nevertheless, quantum walker can be transferred with high probability in two regimes-either when there is a similar number of senders and receivers, which is the same as for the continuous-time quantum walk, or when the number of receivers is considerably larger than the number of senders. Our investigation is based on dimensional reduction utilizing the invariant subspaces of the respective evolutions and the fact that for the appropriate choice of the loop weights the problem can be reduced to the complete graph with loops.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07169S" target="_blank" >GA23-07169S: Vícečásticová kvantová dynamika na grafech a hypergrafech – teorie a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
110
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001295424200006
EID výsledku v databázi Scopus
2-s2.0-85201222182