Overview of advances in ASDEX Upgrade plasma control to support critical physics research for ITER and beyond
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00381519" target="_blank" >RIV/68407700:21340/24:00381519 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1741-4326/ad3472" target="_blank" >https://doi.org/10.1088/1741-4326/ad3472</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1741-4326/ad3472" target="_blank" >10.1088/1741-4326/ad3472</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overview of advances in ASDEX Upgrade plasma control to support critical physics research for ITER and beyond
Popis výsledku v původním jazyce
The successful operation of fusion reactors requires plasma scenarios with good core confinement and acceptable first wall heat loads that are stable and robust to external perturbations. This poses both physical and technological challenges. One of the technologies that addresses these challenges is a complex feedback control system that supports advances in physical understanding and helps to ensure stable operating conditions. The operation of marginally stable plasmas often leads to off-normal events (such as disruptions) and feedback control can prevent these to some extent. This contribution gives an overview of the main results of the development and operation of the feedback control algorithms on ASDEX Upgrade (AUG). Fueling actuators, using a combination of gas valves and pellet injection, can simultaneously control neutral density of the divertor and the density of the plasma core above the Greenwald limit. Impurity injection is employed to control the position of the X-point radiator, allowing the creation of an ELM-suppressed H-mode with high radiation fraction. Heating actuators are used to control the plasma energy content, which supports advanced tokamak experiments and enables stable I-mode operation, and the electron temperature control, which supports turbulence studies. In control technology, AUG has pioneered the use of virtual actuators, which allow effective use of the limited number of heating actuators, adaptive control policies, and exception handling. Such technologies will also be used in ITER. Advanced nonlinear state observers (RAPTOR, RAPDENS) and codes to evaluate the power deposition properties (RABBIT, TORBEAM) are available for routine use in the AUG feedback controllers. Extensive use of the AUG discharge control system further enhances the research capabilities of this machine.
Název v anglickém jazyce
Overview of advances in ASDEX Upgrade plasma control to support critical physics research for ITER and beyond
Popis výsledku anglicky
The successful operation of fusion reactors requires plasma scenarios with good core confinement and acceptable first wall heat loads that are stable and robust to external perturbations. This poses both physical and technological challenges. One of the technologies that addresses these challenges is a complex feedback control system that supports advances in physical understanding and helps to ensure stable operating conditions. The operation of marginally stable plasmas often leads to off-normal events (such as disruptions) and feedback control can prevent these to some extent. This contribution gives an overview of the main results of the development and operation of the feedback control algorithms on ASDEX Upgrade (AUG). Fueling actuators, using a combination of gas valves and pellet injection, can simultaneously control neutral density of the divertor and the density of the plasma core above the Greenwald limit. Impurity injection is employed to control the position of the X-point radiator, allowing the creation of an ELM-suppressed H-mode with high radiation fraction. Heating actuators are used to control the plasma energy content, which supports advanced tokamak experiments and enables stable I-mode operation, and the electron temperature control, which supports turbulence studies. In control technology, AUG has pioneered the use of virtual actuators, which allow effective use of the limited number of heating actuators, adaptive control policies, and exception handling. Such technologies will also be used in ITER. Advanced nonlinear state observers (RAPTOR, RAPDENS) and codes to evaluate the power deposition properties (RABBIT, TORBEAM) are available for routine use in the AUG feedback controllers. Extensive use of the AUG discharge control system further enhances the research capabilities of this machine.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Fusion
ISSN
0029-5515
e-ISSN
1741-4326
Svazek periodika
64
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001191098400001
EID výsledku v databázi Scopus
2-s2.0-85188860994