Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Overview of advances in ASDEX Upgrade plasma control to support critical physics research for ITER and beyond

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00381519" target="_blank" >RIV/68407700:21340/24:00381519 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1741-4326/ad3472" target="_blank" >https://doi.org/10.1088/1741-4326/ad3472</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-4326/ad3472" target="_blank" >10.1088/1741-4326/ad3472</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Overview of advances in ASDEX Upgrade plasma control to support critical physics research for ITER and beyond

  • Popis výsledku v původním jazyce

    The successful operation of fusion reactors requires plasma scenarios with good core confinement and acceptable first wall heat loads that are stable and robust to external perturbations. This poses both physical and technological challenges. One of the technologies that addresses these challenges is a complex feedback control system that supports advances in physical understanding and helps to ensure stable operating conditions. The operation of marginally stable plasmas often leads to off-normal events (such as disruptions) and feedback control can prevent these to some extent. This contribution gives an overview of the main results of the development and operation of the feedback control algorithms on ASDEX Upgrade (AUG). Fueling actuators, using a combination of gas valves and pellet injection, can simultaneously control neutral density of the divertor and the density of the plasma core above the Greenwald limit. Impurity injection is employed to control the position of the X-point radiator, allowing the creation of an ELM-suppressed H-mode with high radiation fraction. Heating actuators are used to control the plasma energy content, which supports advanced tokamak experiments and enables stable I-mode operation, and the electron temperature control, which supports turbulence studies. In control technology, AUG has pioneered the use of virtual actuators, which allow effective use of the limited number of heating actuators, adaptive control policies, and exception handling. Such technologies will also be used in ITER. Advanced nonlinear state observers (RAPTOR, RAPDENS) and codes to evaluate the power deposition properties (RABBIT, TORBEAM) are available for routine use in the AUG feedback controllers. Extensive use of the AUG discharge control system further enhances the research capabilities of this machine.

  • Název v anglickém jazyce

    Overview of advances in ASDEX Upgrade plasma control to support critical physics research for ITER and beyond

  • Popis výsledku anglicky

    The successful operation of fusion reactors requires plasma scenarios with good core confinement and acceptable first wall heat loads that are stable and robust to external perturbations. This poses both physical and technological challenges. One of the technologies that addresses these challenges is a complex feedback control system that supports advances in physical understanding and helps to ensure stable operating conditions. The operation of marginally stable plasmas often leads to off-normal events (such as disruptions) and feedback control can prevent these to some extent. This contribution gives an overview of the main results of the development and operation of the feedback control algorithms on ASDEX Upgrade (AUG). Fueling actuators, using a combination of gas valves and pellet injection, can simultaneously control neutral density of the divertor and the density of the plasma core above the Greenwald limit. Impurity injection is employed to control the position of the X-point radiator, allowing the creation of an ELM-suppressed H-mode with high radiation fraction. Heating actuators are used to control the plasma energy content, which supports advanced tokamak experiments and enables stable I-mode operation, and the electron temperature control, which supports turbulence studies. In control technology, AUG has pioneered the use of virtual actuators, which allow effective use of the limited number of heating actuators, adaptive control policies, and exception handling. Such technologies will also be used in ITER. Advanced nonlinear state observers (RAPTOR, RAPDENS) and codes to evaluate the power deposition properties (RABBIT, TORBEAM) are available for routine use in the AUG feedback controllers. Extensive use of the AUG discharge control system further enhances the research capabilities of this machine.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nuclear Fusion

  • ISSN

    0029-5515

  • e-ISSN

    1741-4326

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001191098400001

  • EID výsledku v databázi Scopus

    2-s2.0-85188860994