EEG data space and feature space distribution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F18%3A00325791" target="_blank" >RIV/68407700:21460/18:00325791 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.prolekare.cz/casopisy/ceska-slovenska-neurologie/2018/dokumenty/32_slovensky_a_cesky_neurologicky_zjazd_a_65_spolocny_slovensky_a_cesky_zjazd_klinickej_neurofyziologie-1-64" target="_blank" >https://www.prolekare.cz/casopisy/ceska-slovenska-neurologie/2018/dokumenty/32_slovensky_a_cesky_neurologicky_zjazd_a_65_spolocny_slovensky_a_cesky_zjazd_klinickej_neurofyziologie-1-64</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EEG data space and feature space distribution
Popis výsledku v původním jazyce
Physiological and pathological processes of the brain may have their characteristic manifestations in the electroencephalographic (EEG) curve. Computer processing offers different views of EEG data. It is possible to examine the continuous amplitude course over time or its individual segments, the scalp electric potential maps, or the spectral space. It is important to investigate the layout of the EEG space in order to design a criterion that would automatically classify the EEG data. The tested EEG data comes from patients with suspected epilepsy, sleep-walking patients and healthy individuals. The data were measured based on the approval of the Bulovka Hospital Ethics Commission and the Ethics Committee of the National Institute of Mental Health. This study uses both linear and nonlinear dimensional reduction techniques to detect the distribution of EEG space. We evaluated the feature space used to classify epileptic data and the space of topographic maps made from the independent components (IC). As the nonlinear dimensional reduction method was used tSNE and nonlinear PCA. The DBSCAN method was used as an auxiliary classifier. Based on our results, we assume nonlinear relationships in the EEG space. Epileptic activity is a separate set of data in the symptom space, on the contrary artifacts (EOG, EMG) are not completely separated by symptoms. When using ICs, artefacts (EOG, heart, EMG) are separated in the topomaps space.
Název v anglickém jazyce
EEG data space and feature space distribution
Popis výsledku anglicky
Physiological and pathological processes of the brain may have their characteristic manifestations in the electroencephalographic (EEG) curve. Computer processing offers different views of EEG data. It is possible to examine the continuous amplitude course over time or its individual segments, the scalp electric potential maps, or the spectral space. It is important to investigate the layout of the EEG space in order to design a criterion that would automatically classify the EEG data. The tested EEG data comes from patients with suspected epilepsy, sleep-walking patients and healthy individuals. The data were measured based on the approval of the Bulovka Hospital Ethics Commission and the Ethics Committee of the National Institute of Mental Health. This study uses both linear and nonlinear dimensional reduction techniques to detect the distribution of EEG space. We evaluated the feature space used to classify epileptic data and the space of topographic maps made from the independent components (IC). As the nonlinear dimensional reduction method was used tSNE and nonlinear PCA. The DBSCAN method was used as an auxiliary classifier. Based on our results, we assume nonlinear relationships in the EEG space. Epileptic activity is a separate set of data in the symptom space, on the contrary artifacts (EOG, EMG) are not completely separated by symptoms. When using ICs, artefacts (EOG, heart, EMG) are separated in the topomaps space.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů