Camera Setup and OpenPose Software without GPU for Calibration and Recording in Telerehabilitation Use
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F21%3A00354734" target="_blank" >RIV/68407700:21460/21:00354734 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00354734
Výsledek na webu
<a href="https://doi.org/10.1109/EHB52898.2021.9657743" target="_blank" >https://doi.org/10.1109/EHB52898.2021.9657743</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EHB52898.2021.9657743" target="_blank" >10.1109/EHB52898.2021.9657743</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Camera Setup and OpenPose Software without GPU for Calibration and Recording in Telerehabilitation Use
Popis výsledku v původním jazyce
Home exercises are significant in the rehabilitation process of physiotherapy patients, which lack immediate feedback as to the proper movement and therefore might humper patient treatment. In this paper we are proposing an algorithm for fast tracking of human body movements performed during physiotherapeutic exercises using a simple webcam home setup and common domestically available CPU computing resources. We use OpenPose for detecting body vertices in key frames and a novel vertex tracking algorithm between video frames, which leverages encoded video Motion Vectors (MVs). We show excellent tracking accuracy between frames and x15 reduction in time, as compared to native OpenPose, which would require a Graphical Processing Unit (GPU) to perform in real time. We further provide a design and implementation of a precision camera system consisting of two cameras in the frontal and lateral direction, which were precisely positioned using a laser cross. This system will be also used to verify whether the webcam is able to record with sufficient quality to further image processing analysis. As part of this work, a camera system including supporting calibration and recording scripts was designed and implemented. The cameras triggers were synchronized by wire interconnection and set up by proposed script. In this work we synchronize two cameras and align their frames such that the OpenPose can be applied independently to each of the two channels to measure movements from two different body projections (3D).
Název v anglickém jazyce
Camera Setup and OpenPose Software without GPU for Calibration and Recording in Telerehabilitation Use
Popis výsledku anglicky
Home exercises are significant in the rehabilitation process of physiotherapy patients, which lack immediate feedback as to the proper movement and therefore might humper patient treatment. In this paper we are proposing an algorithm for fast tracking of human body movements performed during physiotherapeutic exercises using a simple webcam home setup and common domestically available CPU computing resources. We use OpenPose for detecting body vertices in key frames and a novel vertex tracking algorithm between video frames, which leverages encoded video Motion Vectors (MVs). We show excellent tracking accuracy between frames and x15 reduction in time, as compared to native OpenPose, which would require a Graphical Processing Unit (GPU) to perform in real time. We further provide a design and implementation of a precision camera system consisting of two cameras in the frontal and lateral direction, which were precisely positioned using a laser cross. This system will be also used to verify whether the webcam is able to record with sufficient quality to further image processing analysis. As part of this work, a camera system including supporting calibration and recording scripts was designed and implemented. The cameras triggers were synchronized by wire interconnection and set up by proposed script. In this work we synchronize two cameras and align their frames such that the OpenPose can be applied independently to each of the two channels to measure movements from two different body projections (3D).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIZ19008" target="_blank" >LTAIZ19008: Zkvalitnění robotické fyzioterapeutické léčby pomocí metod strojového učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 International Conference on e-Health and Bioengineering (EHB)
ISBN
978-1-6654-4000-4
ISSN
2575-5137
e-ISSN
2575-5145
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Iasi
Datum konání akce
18. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000802227900203