Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F21%3A00356433" target="_blank" >RIV/68407700:21460/21:00356433 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388963:_____/21:00544484
Výsledek na webu
<a href="https://doi.org/10.1038/s41467-021-24494-x" target="_blank" >https://doi.org/10.1038/s41467-021-24494-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-021-24494-x" target="_blank" >10.1038/s41467-021-24494-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins
Popis výsledku v původním jazyce
Nuclear spins in semiconductors are leading candidates for future quantum technologies, including quantum computation, communication, and sensing. Nuclear spins in diamond are particularly attractive due to their long coherence time. With the nitrogen-vacancy (NV) centre, such nuclear qubits benefit from an auxiliary electronic qubit, which, at cryogenic temperatures, enables probabilistic entanglement mediated optically by photonic links. Here, we demonstrate a concept of a microelectronic quantum device at ambient conditions using diamond as wide bandgap semiconductor. The basic quantum processor unit - a single N-14 nuclear spin coupled to the NV electron - is read photoelectrically and thus operates in a manner compatible with nanoscale electronics. The underlying theory provides the key ingredients for photoelectric quantum gate operations and readout of nuclear qubit registers. This demonstration is, therefore, a step towards diamond quantum devices with a readout area limited by inter-electrode distance rather than by the diffraction limit. Such scalability could enable the development of electronic quantum processors based on the dipolar interaction of spin-qubits placed at nanoscopic proximity. Nuclear spins in diamond are promising for applications in quantum technologies due to their long coherence times. Here, the authors demonstrate a scalable electrical readout of individual intrinsic N-14 nuclear spins in diamond, mediated by hyperfine coupling to electron spin of the NV center, as a step towards room-temperature nanoscale diamond quantum devices.
Název v anglickém jazyce
Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins
Popis výsledku anglicky
Nuclear spins in semiconductors are leading candidates for future quantum technologies, including quantum computation, communication, and sensing. Nuclear spins in diamond are particularly attractive due to their long coherence time. With the nitrogen-vacancy (NV) centre, such nuclear qubits benefit from an auxiliary electronic qubit, which, at cryogenic temperatures, enables probabilistic entanglement mediated optically by photonic links. Here, we demonstrate a concept of a microelectronic quantum device at ambient conditions using diamond as wide bandgap semiconductor. The basic quantum processor unit - a single N-14 nuclear spin coupled to the NV electron - is read photoelectrically and thus operates in a manner compatible with nanoscale electronics. The underlying theory provides the key ingredients for photoelectric quantum gate operations and readout of nuclear qubit registers. This demonstration is, therefore, a step towards diamond quantum devices with a readout area limited by inter-electrode distance rather than by the diffraction limit. Such scalability could enable the development of electronic quantum processors based on the dipolar interaction of spin-qubits placed at nanoscopic proximity. Nuclear spins in diamond are promising for applications in quantum technologies due to their long coherence times. Here, the authors demonstrate a scalable electrical readout of individual intrinsic N-14 nuclear spins in diamond, mediated by hyperfine coupling to electron spin of the NV center, as a step towards room-temperature nanoscale diamond quantum devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-28980S" target="_blank" >GA20-28980S: Elektricky čtené kvantové diamantové sensory pro nukleární magnetickou resonanci a chemickou detekci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NATURE COMMUNICATIONS
ISSN
2041-1723
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000677641700013
EID výsledku v databázi Scopus
2-s2.0-85111090917