Photoelectric Detection of Nitrogen-Vacancy Centers Magnetic Resonances in Diamond: Role of Charge Exchanges with Other Optoelectrically Active Defects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F22%3A00355089" target="_blank" >RIV/68407700:21460/22:00355089 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/qute.202100153" target="_blank" >https://doi.org/10.1002/qute.202100153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/qute.202100153" target="_blank" >10.1002/qute.202100153</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photoelectric Detection of Nitrogen-Vacancy Centers Magnetic Resonances in Diamond: Role of Charge Exchanges with Other Optoelectrically Active Defects
Popis výsledku v původním jazyce
The photoelectric detection of nitrogen-vacancy (NV) magnetic resonance (PDMR) in diamond, used for spin state detection and based on reading the photocurrent resulting from NV ionization, offers physical and technical advantages for the development of miniaturized and scalable quantum sensors, as well as solid-state quantum information devices integrated with electronics. Charge exchanges between NV centers and other optoelectrically active defects in diamond are an essential part of the PDMR scheme, impacting the spin-state control and the performances of the photoelectric readout. Through experimental characterization and modeling, processes governing the spin-state contrast, in particular the hole carrier contribution to the photocurrent and the role of acceptor-type defects are discussed. Such acceptor defects can act as traps for free electrons resulting from NV photoionization. Consequently, the hole current can increase at resonance, ultimately leading to an inversion of the sign of PDMR resonances, i.e. to a positive spin contrast. Based on these findings, a method to improve PDMR performances in terms of spin contrast and photoelectric detection rate by selectively ionizing low-energy acceptor defects using a bias red illumination is proposed. This method is shown to lead to a significant improvement of the photoelectric spin detection sensitivity, important for future practical devices.
Název v anglickém jazyce
Photoelectric Detection of Nitrogen-Vacancy Centers Magnetic Resonances in Diamond: Role of Charge Exchanges with Other Optoelectrically Active Defects
Popis výsledku anglicky
The photoelectric detection of nitrogen-vacancy (NV) magnetic resonance (PDMR) in diamond, used for spin state detection and based on reading the photocurrent resulting from NV ionization, offers physical and technical advantages for the development of miniaturized and scalable quantum sensors, as well as solid-state quantum information devices integrated with electronics. Charge exchanges between NV centers and other optoelectrically active defects in diamond are an essential part of the PDMR scheme, impacting the spin-state control and the performances of the photoelectric readout. Through experimental characterization and modeling, processes governing the spin-state contrast, in particular the hole carrier contribution to the photocurrent and the role of acceptor-type defects are discussed. Such acceptor defects can act as traps for free electrons resulting from NV photoionization. Consequently, the hole current can increase at resonance, ultimately leading to an inversion of the sign of PDMR resonances, i.e. to a positive spin contrast. Based on these findings, a method to improve PDMR performances in terms of spin contrast and photoelectric detection rate by selectively ionizing low-energy acceptor defects using a bias red illumination is proposed. This method is shown to lead to a significant improvement of the photoelectric spin detection sensitivity, important for future practical devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-28980S" target="_blank" >GA20-28980S: Elektricky čtené kvantové diamantové sensory pro nukleární magnetickou resonanci a chemickou detekci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Quantum Technologies
ISSN
2511-9044
e-ISSN
2511-9044
Svazek periodika
5
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000769998600001
EID výsledku v databázi Scopus
2-s2.0-85126356169