MIOTA-Based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F22%3A00357864" target="_blank" >RIV/68407700:21460/22:00357864 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/22:PU143766
Výsledek na webu
<a href="https://doi.org/10.1109/ACCESS.2022.3147665" target="_blank" >https://doi.org/10.1109/ACCESS.2022.3147665</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3147665" target="_blank" >10.1109/ACCESS.2022.3147665</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MIOTA-Based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition
Popis výsledku v původním jazyce
This paper presents a new low-voltage CMOS structure for operational transconductance amplifier (OTA) exploiting the bulk-driven, the self-cascode and the multiple-input transistor techniques (MI). The multiple-input OTA (MIOTA) circuit operates in subthreshold region using 0.5V supply voltage and offers enhanced linearity. The MIOTA is developed for biopotential signal as well as electrocardiogram (ECG) signal processing circuit and it is exploited to design a 5th-order Chebyshev low-pass and 3rd-order band-pass filters with a dynamic range (DR) of 57.6 dB and 60.4 dB, and nanopower consumption of 50 nW and 60 nW, respectively. Due to the electronic tuning of cut-off frequency, the low-pass and band-pass filters are suitable for random noise and motion artifact noise reductions in biopotential signals. The circuits were designed in Cadence environment using the standard N-well 0.18 mu m TSMC CMOS technology. Intensive post-layout simulation results along with the process, voltage, temperature analysis (PVT) and Monte Carlo (MC) prove the robustness of the design. The chip area of the proposed MIOTA is 0.00725 mm(2) (118 mu m x 61.5 mu m). Compared with standard OTA the MIOTA offers simplification of filter topology and reduced number of active elements. In order to demonstrate these advantages, the MIOTA-based filter was also build using commercially available OTA LT1228. The experimental results of OTA LT1228 confirm both the filter functionality and the advantages of the proposed MIOTA.
Název v anglickém jazyce
MIOTA-Based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition
Popis výsledku anglicky
This paper presents a new low-voltage CMOS structure for operational transconductance amplifier (OTA) exploiting the bulk-driven, the self-cascode and the multiple-input transistor techniques (MI). The multiple-input OTA (MIOTA) circuit operates in subthreshold region using 0.5V supply voltage and offers enhanced linearity. The MIOTA is developed for biopotential signal as well as electrocardiogram (ECG) signal processing circuit and it is exploited to design a 5th-order Chebyshev low-pass and 3rd-order band-pass filters with a dynamic range (DR) of 57.6 dB and 60.4 dB, and nanopower consumption of 50 nW and 60 nW, respectively. Due to the electronic tuning of cut-off frequency, the low-pass and band-pass filters are suitable for random noise and motion artifact noise reductions in biopotential signals. The circuits were designed in Cadence environment using the standard N-well 0.18 mu m TSMC CMOS technology. Intensive post-layout simulation results along with the process, voltage, temperature analysis (PVT) and Monte Carlo (MC) prove the robustness of the design. The chip area of the proposed MIOTA is 0.00725 mm(2) (118 mu m x 61.5 mu m). Compared with standard OTA the MIOTA offers simplification of filter topology and reduced number of active elements. In order to demonstrate these advantages, the MIOTA-based filter was also build using commercially available OTA LT1228. The experimental results of OTA LT1228 confirm both the filter functionality and the advantages of the proposed MIOTA.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
14325-14338
Kód UT WoS článku
000753400300001
EID výsledku v databázi Scopus
2-s2.0-85124092155