Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Longitudinal Evaluation of Diadochokinesia Characteristics for Hemiplegic Ankle Rehabilitation by Wearable Systems with Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F22%3A00365152" target="_blank" >RIV/68407700:21460/22:00365152 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9991484" target="_blank" >https://ieeexplore.ieee.org/document/9991484</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/EHB55594.2022.9991484" target="_blank" >10.1109/EHB55594.2022.9991484</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Longitudinal Evaluation of Diadochokinesia Characteristics for Hemiplegic Ankle Rehabilitation by Wearable Systems with Machine Learning

  • Popis výsledku v původním jazyce

    The ability to objectively evaluate the efficacy of a rehabilitation regimen from a longitudinal perspective is significant and enabled through the confluence of wearable and wireless inertial sensor systems and machine learning. These capabilities are demonstrated in the context of a 10 month longitudinal study involving a rehabilitation regimen for improving a hemiplegic ankle, such as with respect to the hemiplegic ankle’s diadochokinesia characteristics. Diadochokinesia represents the ability to alternate between agonist and antagonist muscles, such as the dorsiflexion and plantar flexion musculature. The ability to smoothly transition between dorsiflexion and plantar flexion musculature is inherent for the rhythmic process of gait. Using a smartphone as a functional wearable gyroscope platform secured to the dorsum of the foot by an armband, the kinematic properties of the hemiplegic ankle are quantified and recorded in a longitudinal context. A support vector machine implemented through the Waikato Environment for Knowledge Analysis (WEKA) machine learning platform successfully distinguished between the initial phase and final phase of a 10 month longitudinal study involving a rehabilitation regimen for a hemiplegic ankle with considerable classification accuracy. The implications of the research findings establish a pathway for the ascertaining the efficacy of a rehabilitation regimen based on the signal data acquired by wearable systems in conjunction with machine learning.

  • Název v anglickém jazyce

    Longitudinal Evaluation of Diadochokinesia Characteristics for Hemiplegic Ankle Rehabilitation by Wearable Systems with Machine Learning

  • Popis výsledku anglicky

    The ability to objectively evaluate the efficacy of a rehabilitation regimen from a longitudinal perspective is significant and enabled through the confluence of wearable and wireless inertial sensor systems and machine learning. These capabilities are demonstrated in the context of a 10 month longitudinal study involving a rehabilitation regimen for improving a hemiplegic ankle, such as with respect to the hemiplegic ankle’s diadochokinesia characteristics. Diadochokinesia represents the ability to alternate between agonist and antagonist muscles, such as the dorsiflexion and plantar flexion musculature. The ability to smoothly transition between dorsiflexion and plantar flexion musculature is inherent for the rhythmic process of gait. Using a smartphone as a functional wearable gyroscope platform secured to the dorsum of the foot by an armband, the kinematic properties of the hemiplegic ankle are quantified and recorded in a longitudinal context. A support vector machine implemented through the Waikato Environment for Knowledge Analysis (WEKA) machine learning platform successfully distinguished between the initial phase and final phase of a 10 month longitudinal study involving a rehabilitation regimen for a hemiplegic ankle with considerable classification accuracy. The implications of the research findings establish a pathway for the ascertaining the efficacy of a rehabilitation regimen based on the signal data acquired by wearable systems in conjunction with machine learning.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 2022 E-Health and Bioengineering Conference (EHB)

  • ISBN

    978-1-6654-8557-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    Gr. T. Popa University of Medicine and Pharmacy

  • Místo vydání

    Iasi

  • Místo konání akce

    Iasi

  • Datum konání akce

    17. 11. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku