Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Determining an Optimal Oxygen Saturation Target Range Based on Neonatal Maturity: Demonstration of a Decision Tree Analytic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00372462" target="_blank" >RIV/68407700:21460/23:00372462 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/diagnostics13213312" target="_blank" >https://doi.org/10.3390/diagnostics13213312</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/diagnostics13213312" target="_blank" >10.3390/diagnostics13213312</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Determining an Optimal Oxygen Saturation Target Range Based on Neonatal Maturity: Demonstration of a Decision Tree Analytic

  • Popis výsledku v původním jazyce

    The utility of decision tree machine learning in exploring the interactions among the SpO2 target range, neonatal maturity, and oxemic-risk is demonstrated. METHODS: This observational study used 3 years of paired age-SpO2-PaO2 data from a neonatal ICU. The CHAID decision tree method was used to explore the interaction of postmenstrual age (PMA) on the risk of extreme arterial oxygen levels at six different potential SpO2 target ranges (88-92%, 89-93%, 90-94%, 91-95%, 92-96% and 93-97%). Risk was calculated using a severity-weighted average of arterial oxygen outside the normal range for neonates (50-80 mmHg). RESULTS: In total, 7500 paired data points within the potential target range envelope were analyzed. The two lowest target ranges were associated with the highest risk, and the ranges of 91-95% and 92-96% were associated with the lowest risk. There were shifts in the risk associated with PMA. All the target ranges showed the lowest risk at >= 42 weeks PMA. The lowest risk for preterm infants was within a target range of 92-96% with a PMA of <= 34 weeks. CONCLUSIONS: This study demonstrates the utility of decision tree analytics. These results suggest that SpO2 target ranges that are different from typical range might reduce morbidity and mortality. Further research, including prospective randomized trials, is warranted.

  • Název v anglickém jazyce

    Determining an Optimal Oxygen Saturation Target Range Based on Neonatal Maturity: Demonstration of a Decision Tree Analytic

  • Popis výsledku anglicky

    The utility of decision tree machine learning in exploring the interactions among the SpO2 target range, neonatal maturity, and oxemic-risk is demonstrated. METHODS: This observational study used 3 years of paired age-SpO2-PaO2 data from a neonatal ICU. The CHAID decision tree method was used to explore the interaction of postmenstrual age (PMA) on the risk of extreme arterial oxygen levels at six different potential SpO2 target ranges (88-92%, 89-93%, 90-94%, 91-95%, 92-96% and 93-97%). Risk was calculated using a severity-weighted average of arterial oxygen outside the normal range for neonates (50-80 mmHg). RESULTS: In total, 7500 paired data points within the potential target range envelope were analyzed. The two lowest target ranges were associated with the highest risk, and the ranges of 91-95% and 92-96% were associated with the lowest risk. There were shifts in the risk associated with PMA. All the target ranges showed the lowest risk at >= 42 weeks PMA. The lowest risk for preterm infants was within a target range of 92-96% with a PMA of <= 34 weeks. CONCLUSIONS: This study demonstrates the utility of decision tree analytics. These results suggest that SpO2 target ranges that are different from typical range might reduce morbidity and mortality. Further research, including prospective randomized trials, is warranted.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Diagnostics

  • ISSN

    2075-4418

  • e-ISSN

    2075-4418

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    21

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    001100208400001

  • EID výsledku v databázi Scopus

    2-s2.0-85176408470