Accuracy Improvement of Energy Expenditure Estimation Through Neural Networks: A Pilot Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F24%3A00379646" target="_blank" >RIV/68407700:21460/24:00379646 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/ai5040140" target="_blank" >https://doi.org/10.3390/ai5040140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ai5040140" target="_blank" >10.3390/ai5040140</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accuracy Improvement of Energy Expenditure Estimation Through Neural Networks: A Pilot Study
Popis výsledku v původním jazyce
The estimation of energy expenditure (EE) is often an integral part of algorithms for wearable electronics. In field practice, procedures based on an indirect estimation of EE from the heart rate (using empirically or statistically based relationships) work correctly only in a narrow range of physical loads, yet they are current considered state of the art. This pilot study aims to experimentally assess novel method using a wide range of input sensors and parameters (heart rate, RR intervals, and 3D motion activity in several places on the body) and neural network (NN) algorithms. Our proposed method consists of training an NN on a specific subject, with a specific set and placement of sensors during the so-called training run, using the golden standard method of indirect calorimetry as a reference. Then, the subject’s EE can be estimated using trained NN. The results of the experiments (carried out on a total of 12 subjects during various physical activities) show a statistically significant improvement in EE estimation with the new prospective method, and it outperforms the state-of-the-art method based on the heart rate and regression model.
Název v anglickém jazyce
Accuracy Improvement of Energy Expenditure Estimation Through Neural Networks: A Pilot Study
Popis výsledku anglicky
The estimation of energy expenditure (EE) is often an integral part of algorithms for wearable electronics. In field practice, procedures based on an indirect estimation of EE from the heart rate (using empirically or statistically based relationships) work correctly only in a narrow range of physical loads, yet they are current considered state of the art. This pilot study aims to experimentally assess novel method using a wide range of input sensors and parameters (heart rate, RR intervals, and 3D motion activity in several places on the body) and neural network (NN) algorithms. Our proposed method consists of training an NN on a specific subject, with a specific set and placement of sensors during the so-called training run, using the golden standard method of indirect calorimetry as a reference. Then, the subject’s EE can be estimated using trained NN. The results of the experiments (carried out on a total of 12 subjects during various physical activities) show a statistically significant improvement in EE estimation with the new prospective method, and it outperforms the state-of-the-art method based on the heart rate and regression model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010031" target="_blank" >VJ02010031: Modulární multisenzorický profesní oděv k řízení rizika, ochraně zdraví a bezpečnosti členů IZS pomocí metod umělé inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AI
ISSN
2673-2688
e-ISSN
2673-2688
Svazek periodika
5
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
2914-2925
Kód UT WoS článku
001384119100001
EID výsledku v databázi Scopus
2-s2.0-85213420918