Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Virtual Proprioception with Eccentric Training for a Shoulder Press by a Wearable System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F24%3A00382847" target="_blank" >RIV/68407700:21460/24:00382847 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-031-62523-7_50" target="_blank" >http://dx.doi.org/10.1007/978-3-031-62523-7_50</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-62523-7_50" target="_blank" >10.1007/978-3-031-62523-7_50</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Virtual Proprioception with Eccentric Training for a Shoulder Press by a Wearable System

  • Popis výsledku v původním jazyce

    The confluence of wearable systems with machine learning enables the opportunity for quantified exercise with the ability to discern specifically personalized strategies, such as eccentric strength training. Using a unique software application with a smartphone to provide real-time feedback with respect to the gyroscope signal, effective threshold bounds can be prescribed and maintained during an exercise, such as a shoulder press. The concept of utilizing visualized feedback from an inertial sensor, such as a gyroscope, for regulating human movement is known as Virtual Proprioception. Additionally, the smartphone software application is capable of recording the gyroscope signal for wireless transmission to an email account, which constitutes a provisional Cloud computing environment. Given these characteristics, the smartphone has the functional properties of a wearable and wireless gyroscope platform. Post-processing of the gyroscope signal data for an eccentric training oriented shoulder press using the smartphone by means of Virtual Proprioception providing real-time feedback can be differentiated relative to standard strength training through a machine learning algorithm, such as a multilayer perceptron neural network, and considerable classification accuracy has been attained. The implications are augmented acuity for strength training strategies that are highly specified according to personalized exercise objectives. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

  • Název v anglickém jazyce

    Virtual Proprioception with Eccentric Training for a Shoulder Press by a Wearable System

  • Popis výsledku anglicky

    The confluence of wearable systems with machine learning enables the opportunity for quantified exercise with the ability to discern specifically personalized strategies, such as eccentric strength training. Using a unique software application with a smartphone to provide real-time feedback with respect to the gyroscope signal, effective threshold bounds can be prescribed and maintained during an exercise, such as a shoulder press. The concept of utilizing visualized feedback from an inertial sensor, such as a gyroscope, for regulating human movement is known as Virtual Proprioception. Additionally, the smartphone software application is capable of recording the gyroscope signal for wireless transmission to an email account, which constitutes a provisional Cloud computing environment. Given these characteristics, the smartphone has the functional properties of a wearable and wireless gyroscope platform. Post-processing of the gyroscope signal data for an eccentric training oriented shoulder press using the smartphone by means of Virtual Proprioception providing real-time feedback can be differentiated relative to standard strength training through a machine learning algorithm, such as a multilayer perceptron neural network, and considerable classification accuracy has been attained. The implications are augmented acuity for strength training strategies that are highly specified according to personalized exercise objectives. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Digital Health and Medical Bioengineering. Proceedings of the 11th International Conference on E-Health and Bioengineering, EHB-2023, November 9–10, 2023, Bucharest, Romania – Volume 3: Telemedicine, Biomaterials, Environmental Protection, Medical Imaging, and Biomechanics

  • ISBN

    978-3-031-62523-7

  • ISSN

    1680-0737

  • e-ISSN

    1433-9277

  • Počet stran výsledku

    8

  • Strana od-do

    453-460

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Basel

  • Místo konání akce

    Bucuresti

  • Datum konání akce

    9. 11. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001434998400050