Virtual Proprioception with Eccentric Training for a Shoulder Press by a Wearable System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F24%3A00382847" target="_blank" >RIV/68407700:21460/24:00382847 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-62523-7_50" target="_blank" >http://dx.doi.org/10.1007/978-3-031-62523-7_50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-62523-7_50" target="_blank" >10.1007/978-3-031-62523-7_50</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Virtual Proprioception with Eccentric Training for a Shoulder Press by a Wearable System
Popis výsledku v původním jazyce
The confluence of wearable systems with machine learning enables the opportunity for quantified exercise with the ability to discern specifically personalized strategies, such as eccentric strength training. Using a unique software application with a smartphone to provide real-time feedback with respect to the gyroscope signal, effective threshold bounds can be prescribed and maintained during an exercise, such as a shoulder press. The concept of utilizing visualized feedback from an inertial sensor, such as a gyroscope, for regulating human movement is known as Virtual Proprioception. Additionally, the smartphone software application is capable of recording the gyroscope signal for wireless transmission to an email account, which constitutes a provisional Cloud computing environment. Given these characteristics, the smartphone has the functional properties of a wearable and wireless gyroscope platform. Post-processing of the gyroscope signal data for an eccentric training oriented shoulder press using the smartphone by means of Virtual Proprioception providing real-time feedback can be differentiated relative to standard strength training through a machine learning algorithm, such as a multilayer perceptron neural network, and considerable classification accuracy has been attained. The implications are augmented acuity for strength training strategies that are highly specified according to personalized exercise objectives. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Název v anglickém jazyce
Virtual Proprioception with Eccentric Training for a Shoulder Press by a Wearable System
Popis výsledku anglicky
The confluence of wearable systems with machine learning enables the opportunity for quantified exercise with the ability to discern specifically personalized strategies, such as eccentric strength training. Using a unique software application with a smartphone to provide real-time feedback with respect to the gyroscope signal, effective threshold bounds can be prescribed and maintained during an exercise, such as a shoulder press. The concept of utilizing visualized feedback from an inertial sensor, such as a gyroscope, for regulating human movement is known as Virtual Proprioception. Additionally, the smartphone software application is capable of recording the gyroscope signal for wireless transmission to an email account, which constitutes a provisional Cloud computing environment. Given these characteristics, the smartphone has the functional properties of a wearable and wireless gyroscope platform. Post-processing of the gyroscope signal data for an eccentric training oriented shoulder press using the smartphone by means of Virtual Proprioception providing real-time feedback can be differentiated relative to standard strength training through a machine learning algorithm, such as a multilayer perceptron neural network, and considerable classification accuracy has been attained. The implications are augmented acuity for strength training strategies that are highly specified according to personalized exercise objectives. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Digital Health and Medical Bioengineering. Proceedings of the 11th International Conference on E-Health and Bioengineering, EHB-2023, November 9–10, 2023, Bucharest, Romania – Volume 3: Telemedicine, Biomaterials, Environmental Protection, Medical Imaging, and Biomechanics
ISBN
978-3-031-62523-7
ISSN
1680-0737
e-ISSN
1433-9277
Počet stran výsledku
8
Strana od-do
453-460
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
Bucuresti
Datum konání akce
9. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001434998400050