Method of Optimizing the Concrete Reinforcement Arrangement and Orientation in Concrete
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21610%2F21%3A00353325" target="_blank" >RIV/68407700:21610/21:00353325 - isvavai.cz</a>
Výsledek na webu
<a href="https://worldwide.espacenet.com/patent/search/family/062791661/publication/EP3421680A1?q=pn%3DEP3421680A1" target="_blank" >https://worldwide.espacenet.com/patent/search/family/062791661/publication/EP3421680A1?q=pn%3DEP3421680A1</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Method of Optimizing the Concrete Reinforcement Arrangement and Orientation in Concrete
Popis výsledku v původním jazyce
According to the new method of optimizing the concrete reinforcement arrangement and orientation in concrete, the load imposed on the building element to be manufactured with defined dimensions is calculated using common methods and based on this known load, the distribution of tensile stress in this building element is determined. The tensile stress distribution in the given building element is determined by creating a computer geometric model of this building element. The volume of the geometric model of the building element is then split by a spatial mesh system into small discrete volumes from the group of shapes cube, cuboid, pyramid. The shape of a discrete volume is selected based on the shape of the building element and the size is selected based on the requested fineness of the resulting spatial reinforcement mesh. Then, the magnitudes of tensile stresses and spatial vectors of their directions at individual discrete nodes of the mesh are determined. Based on data obtained as described above, are designed both the directions of reinforcements in individual discrete nodes given by the resulting direction of the tensile stress, and also the diameters of individual reinforcement bars corresponding to the magnitudes of these tensile stresses. The resulting spatial reinforcement mesh is modeled by means of a CAD software and printed out using the Direct Metal Laser Sintering 3D metal printing method. The produced spatial reinforcement mesh is inserted into the formwork, concrete is poured in, and when it hardens, the final building element is demoulded. The magnitudes of tensile stresses and their directions at the individual discrete nodes of the mesh are determined for example by the finite element method, the boundary element method, or the finite difference method. ### The patent is exploited by its owner.
Název v anglickém jazyce
Method of Optimizing the Concrete Reinforcement Arrangement and Orientation in Concrete
Popis výsledku anglicky
According to the new method of optimizing the concrete reinforcement arrangement and orientation in concrete, the load imposed on the building element to be manufactured with defined dimensions is calculated using common methods and based on this known load, the distribution of tensile stress in this building element is determined. The tensile stress distribution in the given building element is determined by creating a computer geometric model of this building element. The volume of the geometric model of the building element is then split by a spatial mesh system into small discrete volumes from the group of shapes cube, cuboid, pyramid. The shape of a discrete volume is selected based on the shape of the building element and the size is selected based on the requested fineness of the resulting spatial reinforcement mesh. Then, the magnitudes of tensile stresses and spatial vectors of their directions at individual discrete nodes of the mesh are determined. Based on data obtained as described above, are designed both the directions of reinforcements in individual discrete nodes given by the resulting direction of the tensile stress, and also the diameters of individual reinforcement bars corresponding to the magnitudes of these tensile stresses. The resulting spatial reinforcement mesh is modeled by means of a CAD software and printed out using the Direct Metal Laser Sintering 3D metal printing method. The produced spatial reinforcement mesh is inserted into the formwork, concrete is poured in, and when it hardens, the final building element is demoulded. The magnitudes of tensile stresses and their directions at the individual discrete nodes of the mesh are determined for example by the finite element method, the boundary element method, or the finite difference method. ### The patent is exploited by its owner.
Klasifikace
Druh
P - Patent
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Číslo patentu nebo vzoru
EP3421680
Vydavatel
EPO_1 -
Název vydavatele
European Patent Office
Místo vydání
Munich, The Hague, Berlin, Vienna, Brussels
Stát vydání
—
Datum přijetí
9. 6. 2021
Název vlastníka
České vysoké učení technické v Praze
Způsob využití
A - Výsledek využívá pouze poskytovatel
Druh možnosti využití
P - Využití výsledku jiným subjektem je v některých případech možné bez nabytí licence