Prediction of Moment Capacity of Ultra-High-Performance Concrete Beams Using Explainable Extreme Gradient Boosting Machine Learning Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21610%2F24%3A00377294" target="_blank" >RIV/68407700:21610/24:00377294 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of Moment Capacity of Ultra-High-Performance Concrete Beams Using Explainable Extreme Gradient Boosting Machine Learning Model
Popis výsledku v původním jazyce
The utilisation of Ultra-High-Performance Concrete (UHPC) in structural engineering presents significant design challenges, often necessitating the use of costly and complex finite element analyses due to strongly non-linear material behaviour. To address these issues, this study introduces an explainable machine learning (ML) model employing the eXtreme Gradient Boosting (XGBoost) algorithm, aimed at accurately predicting the bending capacity of UHPC beams. Demonstrating robust performance, the XGBoost model achieved a high coefficient of determination (R2) of 99.5% (training) and 97.6% (testing), outperforming conventional analytical models (FHWA, SIA 2052,and JGJ/T 465) cited in the literature. Further analysis employing the SHapley Additive Explanation (SHAP) framework provided insights into the model’s decision-making process, revealing that the effective depth, steel reinforcement ratio, and steel yield strength significantly influence the predicted bending capacity, while the aspect ratio of fibres has a minimal impact. This research highlights the potential of the XGBoost model to revolutionise prediction, analysis, and design processes within performance-based design frameworks, offering a promising alternative to traditional non-linear analysis methods for UHPC beams.
Název v anglickém jazyce
Prediction of Moment Capacity of Ultra-High-Performance Concrete Beams Using Explainable Extreme Gradient Boosting Machine Learning Model
Popis výsledku anglicky
The utilisation of Ultra-High-Performance Concrete (UHPC) in structural engineering presents significant design challenges, often necessitating the use of costly and complex finite element analyses due to strongly non-linear material behaviour. To address these issues, this study introduces an explainable machine learning (ML) model employing the eXtreme Gradient Boosting (XGBoost) algorithm, aimed at accurately predicting the bending capacity of UHPC beams. Demonstrating robust performance, the XGBoost model achieved a high coefficient of determination (R2) of 99.5% (training) and 97.6% (testing), outperforming conventional analytical models (FHWA, SIA 2052,and JGJ/T 465) cited in the literature. Further analysis employing the SHapley Additive Explanation (SHAP) framework provided insights into the model’s decision-making process, revealing that the effective depth, steel reinforcement ratio, and steel yield strength significantly influence the predicted bending capacity, while the aspect ratio of fibres has a minimal impact. This research highlights the potential of the XGBoost model to revolutionise prediction, analysis, and design processes within performance-based design frameworks, offering a promising alternative to traditional non-linear analysis methods for UHPC beams.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-10892S" target="_blank" >GA24-10892S: Strojové učení pro víceúrovňové modelování prostorové variability a trhlin pro zajištění udržitelnosti betonových konstrukcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
1st International Conference on Synergy between Multi-physics/Multi-scale Modeling and Machine Learning
ISBN
978-9926-8888-1-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
84-87
Název nakladatele
Association of Computational Mechanics in Bosnia and Herzegovina
Místo vydání
Sarajevo
Místo konání akce
Prague
Datum konání akce
19. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—