Models predicting corporate financial distress and industry specifics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21630%2F19%3A00334905" target="_blank" >RIV/68407700:21630/19:00334905 - isvavai.cz</a>
Výsledek na webu
<a href="http://itise.ugr.es/ITISE2019_vol1.pdf" target="_blank" >http://itise.ugr.es/ITISE2019_vol1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Models predicting corporate financial distress and industry specifics
Popis výsledku v původním jazyce
This paper is focused on tools predicting corporate financial situation. There have been constructed plenty of models whose aim is to predict possible corporate default or distress. These models will be examined. Traditionally analyses would be focused on the explanatory power or models' accuracy. The aim of this paper is different. Although the models can be mainly used generally there are many specifics which affect results and gained conclusions. The specific highlighted in this paper is an industry branch. Companies operate in different industry areas which influence their performance and overall financial results and ratios and therefore it has an impact on the models' result. The paper works with three industry branches: Manufacture of fabricated metal products, except machinery and equipment (CZ-NACE 25), Manufacture of machinery and equipment (CZ-NACE 28) and Construction (CZ-NACE F). The results will be based on three data sample, specifically financial healthy companies 2012, insolvent companies 2012 and companies 2017. The results of different models predicting financial distress will be computed and compared. The main tools of descriptive statistics will be applied. It should prove or disapprove if industry specifics influence the models significantly.
Název v anglickém jazyce
Models predicting corporate financial distress and industry specifics
Popis výsledku anglicky
This paper is focused on tools predicting corporate financial situation. There have been constructed plenty of models whose aim is to predict possible corporate default or distress. These models will be examined. Traditionally analyses would be focused on the explanatory power or models' accuracy. The aim of this paper is different. Although the models can be mainly used generally there are many specifics which affect results and gained conclusions. The specific highlighted in this paper is an industry branch. Companies operate in different industry areas which influence their performance and overall financial results and ratios and therefore it has an impact on the models' result. The paper works with three industry branches: Manufacture of fabricated metal products, except machinery and equipment (CZ-NACE 25), Manufacture of machinery and equipment (CZ-NACE 28) and Construction (CZ-NACE F). The results will be based on three data sample, specifically financial healthy companies 2012, insolvent companies 2012 and companies 2017. The results of different models predicting financial distress will be computed and compared. The main tools of descriptive statistics will be applied. It should prove or disapprove if industry specifics influence the models significantly.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Papers ITISE 2019 International Conference on Time Series and Forecasting
ISBN
978-84-17970-78-9
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
647-656
Název nakladatele
Godel Impresiones Digitales S.L.
Místo vydání
—
Místo konání akce
Granada
Datum konání akce
25. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—