Search for the Cosmic Neutrino Background
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21670%2F15%3A00242529" target="_blank" >RIV/68407700:21670/15:00242529 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/1742-6596/580/1/012040/meta" target="_blank" >http://iopscience.iop.org/article/10.1088/1742-6596/580/1/012040/meta</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/580/1/012040" target="_blank" >10.1088/1742-6596/580/1/012040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Search for the Cosmic Neutrino Background
Popis výsledku v původním jazyce
One expects three Cosmic Backgrounds: (1) The Cosmic Microwave Background (CMB) originated 380000 years after the Big Bang (BB). (2) The Neutrino Background decoupled about one second after the BB, while (3) the Cosmic Gravitational Wave Background created by the inflationary expansion decoupled directly after the BB. Only the Cosmic Microwave Background (CMB) has been detected and is well studied. Its spectrum follows Planck's black body radiation formula and shows a remarkable constant temperature of T-0 gamma approximate to 2.7 K independent of the direction. The present photon density is about 370 photons per cm(3). The size of the hot spots, which deviates only in the fifth decimal of the temperature from the average value, tells us, that the universe is flat. About 380 000 years after the Big Bang at a temperature of T-0 gamma = 3000 K already in the matter dominated era the electrons combine with the protons and He-4 and the photons move freely in the neutral universe and form the CMB. So the temperature and distribution of the photons give us information of the universe 380 000 years after the Big Bang. The Cosmic Neutrino Background (C nu B) decoupled from matter already one second after the BB at a temperature of about 10(10) K. Today their temperature is similar to 1.95 K and the average density is 56 electron-neutrinos and the total density of all neutrinos about 336 per cm(3). Measurement of these neutrinos is an extremely challenging experimental problem which can hardly be solved with the present technologies. On the other hand it represents a tempting opportunity to check one of the key elements of the Big Bang Cosmology and to probe the early stages of the universe. The search for the C nu B with the induced beta decay nu(e) + H-3 -> He-3 + e(-) using KATRIN (KArlsruhe TRItium Neutrino experiment) is the topic of this contribution.
Název v anglickém jazyce
Search for the Cosmic Neutrino Background
Popis výsledku anglicky
One expects three Cosmic Backgrounds: (1) The Cosmic Microwave Background (CMB) originated 380000 years after the Big Bang (BB). (2) The Neutrino Background decoupled about one second after the BB, while (3) the Cosmic Gravitational Wave Background created by the inflationary expansion decoupled directly after the BB. Only the Cosmic Microwave Background (CMB) has been detected and is well studied. Its spectrum follows Planck's black body radiation formula and shows a remarkable constant temperature of T-0 gamma approximate to 2.7 K independent of the direction. The present photon density is about 370 photons per cm(3). The size of the hot spots, which deviates only in the fifth decimal of the temperature from the average value, tells us, that the universe is flat. About 380 000 years after the Big Bang at a temperature of T-0 gamma = 3000 K already in the matter dominated era the electrons combine with the protons and He-4 and the photons move freely in the neutral universe and form the CMB. So the temperature and distribution of the photons give us information of the universe 380 000 years after the Big Bang. The Cosmic Neutrino Background (C nu B) decoupled from matter already one second after the BB at a temperature of about 10(10) K. Today their temperature is similar to 1.95 K and the average density is 56 electron-neutrinos and the total density of all neutrinos about 336 per cm(3). Measurement of these neutrinos is an extremely challenging experimental problem which can hardly be solved with the present technologies. On the other hand it represents a tempting opportunity to check one of the key elements of the Big Bang Cosmology and to probe the early stages of the universe. The search for the C nu B with the induced beta decay nu(e) + H-3 -> He-3 + e(-) using KATRIN (KArlsruhe TRItium Neutrino experiment) is the topic of this contribution.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BG - Jaderná, atomová a molekulová fyzika, urychlovače
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2011027" target="_blank" >LM2011027: Projekt LSM/ULISSE ? příspěvek k rozšíření velké výzkumné infrastruktury evropského významu (podzemní laboratoř a výstavba detektoru SuperNEMO, pokračování české účasti)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure
ISBN
—
ISSN
1742-6588
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IOP Publishing
Místo vydání
London
Místo konání akce
Ischia
Datum konání akce
12. 5. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000352130800040