Neutrino mass, electron capture, and the shake-off contributions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21670%2F17%3A00318755" target="_blank" >RIV/68407700:21670/17:00318755 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevC.95.045502" target="_blank" >http://dx.doi.org/10.1103/PhysRevC.95.045502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevC.95.045502" target="_blank" >10.1103/PhysRevC.95.045502</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neutrino mass, electron capture, and the shake-off contributions
Popis výsledku v původním jazyce
Electron capture can determine the electron neutrino mass, while the beta decay of tritium measures the electron antineutrino mass and the neutrinoless double beta decay observes the Majorana neutrino mass. In electron capture, e.g., Ho-163(67) + e(-) -> Dy-167(66)* + nu(e), one can determine the electron neutrino mass from the upper end of the decay spectrum of the excited Dy, which is given by the Q value minus the neutrino mass. The excitation of Dy is described by one, two, and even three hole excitations limited by the Q value. These states decay by x-ray and Auger electron emissions. The total decay energy is measured in a bolometer. These excitations have been studied by Robertson and by Faessler et al. In addition the daughter atom Dy can also be excited by moving in the capture process one (or more) electrons into the continuum. The escape of these continuum electrons is automatically included in the experimental bolometer spectrum. Recently a method developed by Intemann and Pollock was used by DeRujula and Lusignoli for a rough estimate of this shake-off process for "s" wave electrons in capture on Ho-163. The purpose of the present work is to give a more reliable description of "s" wave shake-off in electron capture on holmium. One uses the sudden approximation to calculate the spectrum of the decay of Dy-163(66)* after electron capture on Ho-163(67). For that one needs very accurate atomic wave functions of Ho in its ground state and excited atomic wave functions of Dy including a description of the continuum electrons. DeRujula and Lusignoli use screened nonrelativistic Coulomb wave functions for the Ho electrons 3s and 4s and calculate the Dy* states by first-order perturbation theory based on Ho. In the present approach the wave functions of Ho and Dy* are determined self-consistently with the antisymmetrized relativistic Dirac-Hartree-Fock approach. The relativistic continuum electron wave functions for the ionized Dy* are obtained in the correspond
Název v anglickém jazyce
Neutrino mass, electron capture, and the shake-off contributions
Popis výsledku anglicky
Electron capture can determine the electron neutrino mass, while the beta decay of tritium measures the electron antineutrino mass and the neutrinoless double beta decay observes the Majorana neutrino mass. In electron capture, e.g., Ho-163(67) + e(-) -> Dy-167(66)* + nu(e), one can determine the electron neutrino mass from the upper end of the decay spectrum of the excited Dy, which is given by the Q value minus the neutrino mass. The excitation of Dy is described by one, two, and even three hole excitations limited by the Q value. These states decay by x-ray and Auger electron emissions. The total decay energy is measured in a bolometer. These excitations have been studied by Robertson and by Faessler et al. In addition the daughter atom Dy can also be excited by moving in the capture process one (or more) electrons into the continuum. The escape of these continuum electrons is automatically included in the experimental bolometer spectrum. Recently a method developed by Intemann and Pollock was used by DeRujula and Lusignoli for a rough estimate of this shake-off process for "s" wave electrons in capture on Ho-163. The purpose of the present work is to give a more reliable description of "s" wave shake-off in electron capture on holmium. One uses the sudden approximation to calculate the spectrum of the decay of Dy-163(66)* after electron capture on Ho-163(67). For that one needs very accurate atomic wave functions of Ho in its ground state and excited atomic wave functions of Dy including a description of the continuum electrons. DeRujula and Lusignoli use screened nonrelativistic Coulomb wave functions for the Ho electrons 3s and 4s and calculate the Dy* states by first-order perturbation theory based on Ho. In the present approach the wave functions of Ho and Dy* are determined self-consistently with the antisymmetrized relativistic Dirac-Hartree-Fock approach. The relativistic continuum electron wave functions for the ionized Dy* are obtained in the correspond
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10304 - Nuclear physics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001733" target="_blank" >EF16_013/0001733: Podzemní laboratoř LSM - česká účast ve výzkumné infrastruktuře evropského významu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW C
ISSN
2469-9985
e-ISSN
2469-9993
Svazek periodika
95
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000399940100002
EID výsledku v databázi Scopus
—