Recognition and classification of the cosmic-ray events in images captured by CMOS/CCD cameras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21670%2F19%3A00373949" target="_blank" >RIV/68407700:21670/19:00373949 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21670/21:00373878
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition and classification of the cosmic-ray events in images captured by CMOS/CCD cameras
Popis výsledku v původním jazyce
Muons and other ionizing radiation produced by cosmic rays and radiative decays affect CMOS/CCD sensor. When particles colliding with sensors atoms cause specific kind of noise on images recorded by cameras. We present a concept and preliminary implementation of method for recognizing those events and algorithms for image processing and their classification by machine learning. Our method consists of analyzing the shape of traces present in images recorded by a camera sensor and metadata related to an image like camera model, GPS location of camera, vertical and horizontal orientation of a camera sensor, timestamp of image acquisition, and other events recognized near-by sensors. The so created feature vectors are classified as either a muon-like event, an electron-like event or the other event, possibly noise. For muon-like events our method estimates azimuth of a muon track. Source of the data is database of CREDO (Cosmic-Ray Extremely Distributed Observatory) project and ESO (European Southern Observatory) archives. The telescope dark frames from ESO are analysed. CREDO project collected so far over 2 millions images of events from many kinds of cameralike: smartphones camera, laptop webcams and Internet of Things cameras localised around the globe.
Název v anglickém jazyce
Recognition and classification of the cosmic-ray events in images captured by CMOS/CCD cameras
Popis výsledku anglicky
Muons and other ionizing radiation produced by cosmic rays and radiative decays affect CMOS/CCD sensor. When particles colliding with sensors atoms cause specific kind of noise on images recorded by cameras. We present a concept and preliminary implementation of method for recognizing those events and algorithms for image processing and their classification by machine learning. Our method consists of analyzing the shape of traces present in images recorded by a camera sensor and metadata related to an image like camera model, GPS location of camera, vertical and horizontal orientation of a camera sensor, timestamp of image acquisition, and other events recognized near-by sensors. The so created feature vectors are classified as either a muon-like event, an electron-like event or the other event, possibly noise. For muon-like events our method estimates azimuth of a muon track. Source of the data is database of CREDO (Cosmic-Ray Extremely Distributed Observatory) project and ESO (European Southern Observatory) archives. The telescope dark frames from ESO are analysed. CREDO project collected so far over 2 millions images of events from many kinds of cameralike: smartphones camera, laptop webcams and Internet of Things cameras localised around the globe.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Inženýrské aplikace fyziky mikrosvěta</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
36th International Cosmic Ray Conference
ISBN
—
ISSN
1824-8039
e-ISSN
1824-8039
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Proceedings of Science
Místo vydání
Trieste
Místo konání akce
Madison, Wisconsin
Datum konání akce
24. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—