Distributed state estimation and fault diagnosis using reduced sensitivity to neighbor estimates with application to building control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F23%3A00363506" target="_blank" >RIV/68407700:21720/23:00363506 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/23:00363506
Výsledek na webu
<a href="https://doi.org/10.1016/j.jfranklin.2022.10.017" target="_blank" >https://doi.org/10.1016/j.jfranklin.2022.10.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfranklin.2022.10.017" target="_blank" >10.1016/j.jfranklin.2022.10.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distributed state estimation and fault diagnosis using reduced sensitivity to neighbor estimates with application to building control
Popis výsledku v původním jazyce
This paper proposes solutions that reduce the inaccuracy of distributed state estimation and consequent performance deterioration of distributed model predictive control caused by faults and inaccurate models. A distributed state estimation method for large-scale systems is introduced. A local state estimation approach considers the uncertainty of neighbor estimates, which can improve the state estimation accuracy, whereas it keeps a low network communication burden. The method also incorporates the uncertainty of model parameters which improves the performance when using simplified models. The proposed method is extended with multiple models and estimates the probability of nominal and fault behavior models, which creates a distributed fault detection and diagnosis method. An example with application to the building heating control demonstrates that the proposed algorithm provides accurate state estimates to a controller and detects local or global faults while using simplified models.
Název v anglickém jazyce
Distributed state estimation and fault diagnosis using reduced sensitivity to neighbor estimates with application to building control
Popis výsledku anglicky
This paper proposes solutions that reduce the inaccuracy of distributed state estimation and consequent performance deterioration of distributed model predictive control caused by faults and inaccurate models. A distributed state estimation method for large-scale systems is introduced. A local state estimation approach considers the uncertainty of neighbor estimates, which can improve the state estimation accuracy, whereas it keeps a low network communication burden. The method also incorporates the uncertainty of model parameters which improves the performance when using simplified models. The proposed method is extended with multiple models and estimates the probability of nominal and fault behavior models, which creates a distributed fault detection and diagnosis method. An example with application to the building heating control demonstrates that the proposed algorithm provides accurate state estimates to a controller and detects local or global faults while using simplified models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TK01020024" target="_blank" >TK01020024: Hydronics 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Franklin Institute
ISSN
0016-0032
e-ISSN
1879-2693
Svazek periodika
360
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
9216-9239
Kód UT WoS článku
001047055500001
EID výsledku v databázi Scopus
2-s2.0-85143546044