Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F24%3A00373636" target="_blank" >RIV/68407700:21720/24:00373636 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.enconman.2024.118076" target="_blank" >https://doi.org/10.1016/j.enconman.2024.118076</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enconman.2024.118076" target="_blank" >10.1016/j.enconman.2024.118076</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier

  • Popis výsledku v původním jazyce

    Accurate and reliable fault detection procedures are crucial for optimizing photovoltaic (PV) system performance. Establishing a trustworthy PV array model is the primary step and a vital tool for monitoring and diagnosing PV systems. This paper outlines a two-step approach for creating a reliable PV array model and implementing a fault detection procedure using Random Forest Classifiers (RFCs). Firstly, we extracted the five unknown parameters of the one-diode model (ODM) by combining the current–voltage translation method to predict the reference curve and employing the modified grey wolf optimization (MGWO) algorithm. In the second step, we simulated the PV array to obtain maximum power point (MPP) coordinates and construct operational databases through co-simulations in PSIM/MATLAB. We developed two RFCs: one for fault detection (a binary classifier) and another for fault diagnosis (a multiclass classifier). Our results confirmed the accuracy of the PV array modeling approach. We achieved a root mean square error (RMSE) value of 0.0122 for the ODM parameter extraction and RMSEs lower than 0.3 in dynamic PV array output current simulations under cloudy conditions. Regarding the fault detection procedure, our results demonstrate exceptional classification accuracy rates of 99.4% for both fault detection and diagnosis, surpassing other tested models like Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Neural Networks (MLP Classifier), Decision Trees (DT), and Stochastic Gradient Descent (SGDC).

  • Název v anglickém jazyce

    Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier

  • Popis výsledku anglicky

    Accurate and reliable fault detection procedures are crucial for optimizing photovoltaic (PV) system performance. Establishing a trustworthy PV array model is the primary step and a vital tool for monitoring and diagnosing PV systems. This paper outlines a two-step approach for creating a reliable PV array model and implementing a fault detection procedure using Random Forest Classifiers (RFCs). Firstly, we extracted the five unknown parameters of the one-diode model (ODM) by combining the current–voltage translation method to predict the reference curve and employing the modified grey wolf optimization (MGWO) algorithm. In the second step, we simulated the PV array to obtain maximum power point (MPP) coordinates and construct operational databases through co-simulations in PSIM/MATLAB. We developed two RFCs: one for fault detection (a binary classifier) and another for fault diagnosis (a multiclass classifier). Our results confirmed the accuracy of the PV array modeling approach. We achieved a root mean square error (RMSE) value of 0.0122 for the ODM parameter extraction and RMSEs lower than 0.3 in dynamic PV array output current simulations under cloudy conditions. Regarding the fault detection procedure, our results demonstrate exceptional classification accuracy rates of 99.4% for both fault detection and diagnosis, surpassing other tested models like Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Neural Networks (MLP Classifier), Decision Trees (DT), and Stochastic Gradient Descent (SGDC).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TK70020002" target="_blank" >TK70020002: Zavádění chytrých řešení OZE do energetických komunit</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Conversion and Management

  • ISSN

    0196-8904

  • e-ISSN

    1879-2227

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    301

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001164623100001

  • EID výsledku v databázi Scopus

    2-s2.0-85182280217