Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bottom-up energy transition through rooftop PV upscaling: Remaining issues and emerging upgrades towards NZEBs at different climatic conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F24%3A00380917" target="_blank" >RIV/68407700:21720/24:00380917 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.rset.2024.100083" target="_blank" >https://doi.org/10.1016/j.rset.2024.100083</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rset.2024.100083" target="_blank" >10.1016/j.rset.2024.100083</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bottom-up energy transition through rooftop PV upscaling: Remaining issues and emerging upgrades towards NZEBs at different climatic conditions

  • Popis výsledku v původním jazyce

    In supporting the phase-out of the fossil fuels, Roof Top Photovoltaic (RTPV) deployment has been adopted worldwide as an important step of a bottom-up driving pathway of citizens’ transformation to become net energy producers within the community of their localized building environment. However, the diverse bioclimatic conditions of this environment may affect the best RTPV implementation. This is facilitated by climate-related characterization and regional adaptation. Hence, the built environment globally as a function of the global horizontal irradiation (GHI), the local environmental parameters of the different climatic zones and the associated technological developments are surveyed. In this work, we have critically assessed the RTPV effect on the building's overall energy performance and found beneficial over a diverse range of moderate and warm climates. By applying adequate insulation beneath the RTPVs, the increased heating needs in winter in cold climates or higher nighttime cooling needs in summertime can be avoided. To design low-energy buildings, we propose an analytical framework based on the space energy coverage by RTPV and the global horizontal irradiation. Moreover, RTPV cooling at elevated temperatures improves the efficiency up to 20 % and increases the generated electricity up to 15 %. Increasing the RTPV efficiency with emerging technologies could extend the decarbonization of high-rise buildings with energy efficiency and RTPV measures. To accelerate the clean energy transition, rooftop PVs should be widely adopted for sustainable solar building applications. Combined with electrical storage, this will allow renewable energy resources to cover a large fraction of future building energy needs worldwide.

  • Název v anglickém jazyce

    Bottom-up energy transition through rooftop PV upscaling: Remaining issues and emerging upgrades towards NZEBs at different climatic conditions

  • Popis výsledku anglicky

    In supporting the phase-out of the fossil fuels, Roof Top Photovoltaic (RTPV) deployment has been adopted worldwide as an important step of a bottom-up driving pathway of citizens’ transformation to become net energy producers within the community of their localized building environment. However, the diverse bioclimatic conditions of this environment may affect the best RTPV implementation. This is facilitated by climate-related characterization and regional adaptation. Hence, the built environment globally as a function of the global horizontal irradiation (GHI), the local environmental parameters of the different climatic zones and the associated technological developments are surveyed. In this work, we have critically assessed the RTPV effect on the building's overall energy performance and found beneficial over a diverse range of moderate and warm climates. By applying adequate insulation beneath the RTPVs, the increased heating needs in winter in cold climates or higher nighttime cooling needs in summertime can be avoided. To design low-energy buildings, we propose an analytical framework based on the space energy coverage by RTPV and the global horizontal irradiation. Moreover, RTPV cooling at elevated temperatures improves the efficiency up to 20 % and increases the generated electricity up to 15 %. Increasing the RTPV efficiency with emerging technologies could extend the decarbonization of high-rise buildings with energy efficiency and RTPV measures. To accelerate the clean energy transition, rooftop PVs should be widely adopted for sustainable solar building applications. Combined with electrical storage, this will allow renewable energy resources to cover a large fraction of future building energy needs worldwide.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Renewable and Sustainable Energy Transition

  • ISSN

    2667-095X

  • e-ISSN

    2667-095X

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    srpen

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    19

  • Strana od-do

  • Kód UT WoS článku

    001310515700001

  • EID výsledku v databázi Scopus

    2-s2.0-85187689675