Online recognition of sketched arrow-connected diagrams
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F16%3A00301690" target="_blank" >RIV/68407700:21730/16:00301690 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/16:00301690
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s10032-016-0269-z" target="_blank" >http://link.springer.com/article/10.1007/s10032-016-0269-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10032-016-0269-z" target="_blank" >10.1007/s10032-016-0269-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online recognition of sketched arrow-connected diagrams
Popis výsledku v původním jazyce
We introduce a new, online, stroke-based recognition system for hand-drawn diagrams which belong to a group of documents with an explicit structure obvious to humans but only loosely defined from the machine point of view. We propose a model for recognition by selection of symbol candidates, based on evaluation of relations between candidates using a set of predicates. It is suitable for simpler structures where the relations are explicitly given by symbols, arrows in the case of diagrams. Knowledge of a specific diagram domain is used—the two domains are flowcharts and finite automata. Although the individual pipeline steps are tailored for these, the system can readily be adapted for other domains. Our entire diagram recognition pipeline is outlined. Its core parts are text/non-text separation, symbol segmentation, their classification and structural analysis. Individual parts have been published by the authors previously and so are described briefly and referenced. Thorough evaluation on benchmark databases shows the accuracy of the system reaches the state of the art and is ready for practical use. The paper brings several contributions: (a) the entire system and its state-of-the-art performance; (b) the methodology exploring document structure when it is loosely defined; (c) the thorough experimental evaluation; (d) the new annotated database for online sketched flowcharts and finite automata diagrams.
Název v anglickém jazyce
Online recognition of sketched arrow-connected diagrams
Popis výsledku anglicky
We introduce a new, online, stroke-based recognition system for hand-drawn diagrams which belong to a group of documents with an explicit structure obvious to humans but only loosely defined from the machine point of view. We propose a model for recognition by selection of symbol candidates, based on evaluation of relations between candidates using a set of predicates. It is suitable for simpler structures where the relations are explicitly given by symbols, arrows in the case of diagrams. Knowledge of a specific diagram domain is used—the two domains are flowcharts and finite automata. Although the individual pipeline steps are tailored for these, the system can readily be adapted for other domains. Our entire diagram recognition pipeline is outlined. Its core parts are text/non-text separation, symbol segmentation, their classification and structural analysis. Individual parts have been published by the authors previously and so are described briefly and referenced. Thorough evaluation on benchmark databases shows the accuracy of the system reaches the state of the art and is ready for practical use. The paper brings several contributions: (a) the entire system and its state-of-the-art performance; (b) the methodology exploring document structure when it is loosely defined; (c) the thorough experimental evaluation; (d) the new annotated database for online sketched flowcharts and finite automata diagrams.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-04960S" target="_blank" >GA15-04960S: SeLeCt - struktury, učení a kognice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal on Document Analysis and Recognition
ISSN
1433-2833
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
253-267
Kód UT WoS článku
000382088800005
EID výsledku v databázi Scopus
2-s2.0-84974851308