Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning from Narrated Instruction Videos

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00318985" target="_blank" >RIV/68407700:21730/18:00318985 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/TPAMI.2017.2749223" target="_blank" >http://dx.doi.org/10.1109/TPAMI.2017.2749223</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TPAMI.2017.2749223" target="_blank" >10.1109/TPAMI.2017.2749223</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning from Narrated Instruction Videos

  • Popis výsledku v původním jazyce

    Automatic assistants could guide a person or a robot in performing new tasks, such as changing a car tire or repotting a plant. Creating such assistants, however, is non-trivial and requires understanding of visual and verbal content of a video. Towards this goal, we here address the problem of automatically learning the main steps of a task from a set of narrated instruction videos. We develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the associated narration. The method sequentially clusters textual and visual representations of a task, where the two clustering problems are linked by joint constraints to obtain a single coherent sequence of steps in both modalities. To evaluate our method, we collect and annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains videos for five different tasks with complex interactions between people and objects, captured in a variety of indoor and outdoor settings. We experimentally demonstrate that the proposed method can automatically discover, learn and localize the main steps of a task input videos.

  • Název v anglickém jazyce

    Learning from Narrated Instruction Videos

  • Popis výsledku anglicky

    Automatic assistants could guide a person or a robot in performing new tasks, such as changing a car tire or repotting a plant. Creating such assistants, however, is non-trivial and requires understanding of visual and verbal content of a video. Towards this goal, we here address the problem of automatically learning the main steps of a task from a set of narrated instruction videos. We develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the associated narration. The method sequentially clusters textual and visual representations of a task, where the two clustering problems are linked by joint constraints to obtain a single coherent sequence of steps in both modalities. To evaluate our method, we collect and annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains videos for five different tasks with complex interactions between people and objects, captured in a variety of indoor and outdoor settings. We experimentally demonstrate that the proposed method can automatically discover, learn and localize the main steps of a task input videos.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Pattern Analysis and Machine Intelligence

  • ISSN

    0162-8828

  • e-ISSN

    1939-3539

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    2194-2208

  • Kód UT WoS článku

    000440868400012

  • EID výsledku v databázi Scopus

    2-s2.0-85029154712