Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00323132" target="_blank" >RIV/68407700:21730/18:00323132 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8593741" target="_blank" >https://ieeexplore.ieee.org/document/8593741</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS.2018.8593741" target="_blank" >10.1109/IROS.2018.8593741</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds
Popis výsledku v původním jazyce
The presented work deals with classification of garment categories including pants, shorts, shirts, T-shirts and towels. The knowledge of the garment category is crucial for its robotic manipulation. Our work focuses particularly on garments being held in a hanging state by a robotic arm. The input of our method is a set of depth maps taken from different viewpoints around the garment. The depths are fused into a single 3D point cloud. The cloud is fed into a convolutional neural network that transforms it into a single global feature vector. The network utilizes a generalized convolution operation defined over the local neighborhood of a point. It can deal with permutations of the input points. It was trained on a large dataset of common 3D objects. The extracted feature vector is classified with SVM trained on smaller datasets of garments. The proposed method was evaluated on publicly available data and compared to the original methods, achieving competitive performance and better generalization capability.
Název v anglickém jazyce
Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds
Popis výsledku anglicky
The presented work deals with classification of garment categories including pants, shorts, shirts, T-shirts and towels. The knowledge of the garment category is crucial for its robotic manipulation. Our work focuses particularly on garments being held in a hanging state by a robotic arm. The input of our method is a set of depth maps taken from different viewpoints around the garment. The depths are fused into a single 3D point cloud. The cloud is fed into a convolutional neural network that transforms it into a single global feature vector. The network utilizes a generalized convolution operation defined over the local neighborhood of a point. It can deal with permutations of the input points. It was trained on a large dataset of common 3D objects. The extracted feature vector is classified with SVM trained on smaller datasets of garments. The proposed method was evaluated on publicly available data and compared to the original methods, achieving competitive performance and better generalization capability.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-5386-8095-7
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
6
Strana od-do
5307-5312
Název nakladatele
IEEE Press
Místo vydání
New York
Místo konání akce
Madrid
Datum konání akce
1. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000458872704125