Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00328078" target="_blank" >RIV/68407700:21730/18:00328078 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8578995" target="_blank" >https://ieeexplore.ieee.org/document/8578995</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2018.00897" target="_blank" >10.1109/CVPR.2018.00897</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions
Popis výsledku v původním jazyce
Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing condition, including day-night changes, as well as weather and seasonal variations, while providing highly accurate 6 degree-of-freedom (6DOF) camera pose estimates. In this paper, we introduce the first benchmark datasets specifically designed for analyzing the impact of such factors on visual localization. Using carefully created ground truth poses for query images taken under a wide variety of conditions, we evaluate the impact of various factors on 6DOF camera pose estimation accuracy through extensive experiments with state-of-the-art localization approaches. Based on our results, we draw conclusions about the difficulty of different conditions, showing that long-term localization is far from solved, and propose promising avenues for future work, including sequence-based localization approaches and the need for better local features. Our benchmark is available at visuallocalization.net.
Název v anglickém jazyce
Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions
Popis výsledku anglicky
Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing condition, including day-night changes, as well as weather and seasonal variations, while providing highly accurate 6 degree-of-freedom (6DOF) camera pose estimates. In this paper, we introduce the first benchmark datasets specifically designed for analyzing the impact of such factors on visual localization. Using carefully created ground truth poses for query images taken under a wide variety of conditions, we evaluate the impact of various factors on 6DOF camera pose estimation accuracy through extensive experiments with state-of-the-art localization approaches. Based on our results, we draw conclusions about the difficulty of different conditions, showing that long-term localization is far from solved, and propose promising avenues for future work, including sequence-based localization approaches and the need for better local features. Our benchmark is available at visuallocalization.net.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2018: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-6420-9
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
8601-8610
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Salt Lake City
Datum konání akce
19. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000457843608080