Polycrystalline Diamond Coating Protects Zr Cladding Surface Against Corrosion in Water-cooled Nuclear Reactors: Nuclear Fuel Durability Enhancement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00329816" target="_blank" >RIV/68407700:21730/18:00329816 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119407652.ch5" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119407652.ch5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/9781119407652.ch5" target="_blank" >10.1002/9781119407652.ch5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polycrystalline Diamond Coating Protects Zr Cladding Surface Against Corrosion in Water-cooled Nuclear Reactors: Nuclear Fuel Durability Enhancement
Popis výsledku v původním jazyce
In this chapter we demonstrate a new strategy for the protection of zirconium (Zr) nuclear fuel cladding material by composite polycrystalline diamond (PCD) layers against corrosion in water-cooled nuclear reactors. We show that Zr alloy surfaces can be effectively protected against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments by coating the Zr surface with PCD layers grown in a microwave plasma chemical vapour deposition apparatus. The composition of PCD is not homogeneous – it contains diamond sp3-hybridized phase (96%) and soft sp2-hybridized C phase. This composition enables PCD layers to have suitable thermal expansion over a wide range of temperatures leading to no delamination. A key requirement is effective protection of Zr alloy surfaces against oxidation and hydration under standard operating conditions (360 °C). Oxidation of PCD-coated Zr alloy surfaces after more than 100 days in 360 °C hot water was significantly decreased (35-55%) compared with that of unprotected Zr alloy processed under the same conditions. Also at high temperatures (1100 °C), i.e. accident conditions, PCD layers may serve as passive elements for nuclear safety. PCD-protected Zr alloys also exhibited lower hydrogen concentrations than unprotected samples under all investigated conditions; in particular at accident conditions. After ion beam irradiation (10 dpa, 3 MeV Fe2+) PCD layers show satisfactory structural integrity with both sp3 and sp2 carbon phases present.
Název v anglickém jazyce
Polycrystalline Diamond Coating Protects Zr Cladding Surface Against Corrosion in Water-cooled Nuclear Reactors: Nuclear Fuel Durability Enhancement
Popis výsledku anglicky
In this chapter we demonstrate a new strategy for the protection of zirconium (Zr) nuclear fuel cladding material by composite polycrystalline diamond (PCD) layers against corrosion in water-cooled nuclear reactors. We show that Zr alloy surfaces can be effectively protected against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments by coating the Zr surface with PCD layers grown in a microwave plasma chemical vapour deposition apparatus. The composition of PCD is not homogeneous – it contains diamond sp3-hybridized phase (96%) and soft sp2-hybridized C phase. This composition enables PCD layers to have suitable thermal expansion over a wide range of temperatures leading to no delamination. A key requirement is effective protection of Zr alloy surfaces against oxidation and hydration under standard operating conditions (360 °C). Oxidation of PCD-coated Zr alloy surfaces after more than 100 days in 360 °C hot water was significantly decreased (35-55%) compared with that of unprotected Zr alloy processed under the same conditions. Also at high temperatures (1100 °C), i.e. accident conditions, PCD layers may serve as passive elements for nuclear safety. PCD-protected Zr alloys also exhibited lower hydrogen concentrations than unprotected samples under all investigated conditions; in particular at accident conditions. After ion beam irradiation (10 dpa, 3 MeV Fe2+) PCD layers show satisfactory structural integrity with both sp3 and sp2 carbon phases present.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10304 - Nuclear physics
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020455" target="_blank" >TE01020455: Centrum pokročilých jaderných technologií (CANUT)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advanced Coating Materials
ISBN
978-1-119-40763-8
Počet stran výsledku
34
Strana od-do
123-156
Počet stran knihy
546
Název nakladatele
J. Wiley
Místo vydání
New York
Kód UT WoS kapitoly
—