Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cloud computing for seizure detection in implanted neural devices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00329073" target="_blank" >RIV/68407700:21730/19:00329073 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1741-2552/aaf92e" target="_blank" >https://doi.org/10.1088/1741-2552/aaf92e</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-2552/aaf92e" target="_blank" >10.1088/1741-2552/aaf92e</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cloud computing for seizure detection in implanted neural devices

  • Popis výsledku v původním jazyce

    Objective. Closed-loop implantable neural stimulators arc an exciting treatment option for patients with medically refractory epilepsy, with a number of new devices in or nearing clinical trials. These devices must accurately detect a variety of seizure types in order to reliably deliver therapeutic stimulation. While effective, broadly-applicable seizure detection algorithms have recently been published, these methods arc too computationally intensive to be directly deployed in an implantable device. We demonstrate a strategy that couples devices to cloud computing resources in order to implement complex seizure detection methods on an implantable device platform. Approach. We use a sensitive gating algorithm capable of running on-board a device to identify potential seizure epochs and transmit these epochs to a cloud-based analysis platform. A precise seizure detection algorithm is then applied to the candidate epochs, leveraging cloud computing resources for accurate seizure event detection. This seizure detection strategy was developed and tested on eleven human implanted device recordings generated using the NeuroVista Seizure Advisory System. Main results. The gating algorithm achieved high-sensitivity detection using a small feature set as input to a linear classifier, compatible with the computational capability of next-generation implantable devices. The cloud-based precision algorithm successfully identified all seizures transmitted by the gating algorithm while significantly reducing the false positive rate. Across all subjects, this joint approach detected 99% of seizures with a false positive rate of 0.03 h(-1). Significance. We present a novel framework for implementing computationally intensive algorithms on human data recorded from an implanted device. By using telemetry to intelligently access cloud-based computational resources, the next generation of neuro-implantable devices will leverage sophisticated algorithms with potential to greatly improve

  • Název v anglickém jazyce

    Cloud computing for seizure detection in implanted neural devices

  • Popis výsledku anglicky

    Objective. Closed-loop implantable neural stimulators arc an exciting treatment option for patients with medically refractory epilepsy, with a number of new devices in or nearing clinical trials. These devices must accurately detect a variety of seizure types in order to reliably deliver therapeutic stimulation. While effective, broadly-applicable seizure detection algorithms have recently been published, these methods arc too computationally intensive to be directly deployed in an implantable device. We demonstrate a strategy that couples devices to cloud computing resources in order to implement complex seizure detection methods on an implantable device platform. Approach. We use a sensitive gating algorithm capable of running on-board a device to identify potential seizure epochs and transmit these epochs to a cloud-based analysis platform. A precise seizure detection algorithm is then applied to the candidate epochs, leveraging cloud computing resources for accurate seizure event detection. This seizure detection strategy was developed and tested on eleven human implanted device recordings generated using the NeuroVista Seizure Advisory System. Main results. The gating algorithm achieved high-sensitivity detection using a small feature set as input to a linear classifier, compatible with the computational capability of next-generation implantable devices. The cloud-based precision algorithm successfully identified all seizures transmitted by the gating algorithm while significantly reducing the false positive rate. Across all subjects, this joint approach detected 99% of seizures with a false positive rate of 0.03 h(-1). Significance. We present a novel framework for implementing computationally intensive algorithms on human data recorded from an implanted device. By using telemetry to intelligently access cloud-based computational resources, the next generation of neuro-implantable devices will leverage sophisticated algorithms with potential to greatly improve

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Neural Engineering

  • ISSN

    1741-2560

  • e-ISSN

    1741-2552

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000457728100003

  • EID výsledku v databázi Scopus

    2-s2.0-85062860543