Specifying Dual-Arm Robot Planning Problems Through Natural Language and Demonstration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337147" target="_blank" >RIV/68407700:21730/19:00337147 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2019.2898714" target="_blank" >https://doi.org/10.1109/LRA.2019.2898714</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2019.2898714" target="_blank" >10.1109/LRA.2019.2898714</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Specifying Dual-Arm Robot Planning Problems Through Natural Language and Demonstration
Popis výsledku v původním jazyce
Multi-modal robot programming with natural language and demonstration is a promising technique for efficient teaching of manipulation tasks in industrial environments. In particular, with modern dual-arm robots designed to quickly take over tasks at typical industrial workbenches, the direct teaching of task sequences hardly utilizes the robots' capabilities. We, therefore, propose a two-staged approach that combines natural language instructions and demonstration with simultaneous task allocation and motion scheduling based on constraint programming. Instead of providing a task description and demonstrations that are replayed to a large extent, the user describes tasks to be scheduled with all relevant constraints and demonstrates relevant locations relative to workpieces and other objects. With explicitly stated constraints on the partial ordering of tasks, the solver allocates the tasks to the robot arms and schedules them in time while avoiding self-collisions and reducing the makespan in our experiment by 33%. The linguistic concepts of naming and grouping enable systematic reuse of sub-task ensembles. The proposed approach is evaluated with four variants of a glueing use-case from furniture assembly in user studies with ten participants. In these user studies, we observed a speed-up for the task definition of more than six times compared to a textual specification of the planning problems using the Python-based planner API.
Název v anglickém jazyce
Specifying Dual-Arm Robot Planning Problems Through Natural Language and Demonstration
Popis výsledku anglicky
Multi-modal robot programming with natural language and demonstration is a promising technique for efficient teaching of manipulation tasks in industrial environments. In particular, with modern dual-arm robots designed to quickly take over tasks at typical industrial workbenches, the direct teaching of task sequences hardly utilizes the robots' capabilities. We, therefore, propose a two-staged approach that combines natural language instructions and demonstration with simultaneous task allocation and motion scheduling based on constraint programming. Instead of providing a task description and demonstrations that are replayed to a large extent, the user describes tasks to be scheduled with all relevant constraints and demonstrates relevant locations relative to workpieces and other objects. With explicitly stated constraints on the partial ordering of tasks, the solver allocates the tasks to the robot arms and schedules them in time while avoiding self-collisions and reducing the makespan in our experiment by 33%. The linguistic concepts of naming and grouping enable systematic reuse of sub-task ensembles. The proposed approach is evaluated with four variants of a glueing use-case from furniture assembly in user studies with ten participants. In these user studies, we observed a speed-up for the task definition of more than six times compared to a textual specification of the planning problems using the Python-based planner API.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50103 - Cognitive sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
2622-2629
Kód UT WoS článku
000466928400004
EID výsledku v databázi Scopus
2-s2.0-85065464850