Robust Motion Segmentation from Pairwise Matches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337354" target="_blank" >RIV/68407700:21730/19:00337354 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/1905.09043" target="_blank" >https://arxiv.org/abs/1905.09043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2019.00076" target="_blank" >10.1109/ICCV.2019.00076</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Motion Segmentation from Pairwise Matches
Popis výsledku v původním jazyce
In this paper we address a classification problem that has not been considered before, namely motion segmentation given pairwise matches only. Our contribution to this unexplored task is a novel formulation of motion segmentation as a two-step process. First, motion segmentation is performed on image pairs independently. Secondly, we combine independent pairwise segmentation results in a robust way into the final globally consistent segmentation. Our approach is inspired by the success of averaging methods. We demonstrate in simulated as well as in real experiments that our method is very effective in reducing the errors in the pairwise motion segmentation and can cope with large number of mismatches.
Název v anglickém jazyce
Robust Motion Segmentation from Pairwise Matches
Popis výsledku anglicky
In this paper we address a classification problem that has not been considered before, namely motion segmentation given pairwise matches only. Our contribution to this unexplored task is a novel formulation of motion segmentation as a two-step process. First, motion segmentation is performed on image pairs independently. Secondly, we combine independent pairwise segmentation results in a robust way into the final globally consistent segmentation. Our approach is inspired by the success of averaging methods. We demonstrate in simulated as well as in real experiments that our method is very effective in reducing the errors in the pairwise motion segmentation and can cope with large number of mismatches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE International Conference on Computer Vision (ICCV 2019)
ISBN
978-1-7281-4804-5
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
11
Strana od-do
671-681
Název nakladatele
IEEE Computer Society Press
Místo vydání
Los Alamitos
Místo konání akce
Seoul
Datum konání akce
27. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000531438100068