Modeling self-organized emergence of perspective in/variant mirror neurons in a robotic system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337693" target="_blank" >RIV/68407700:21730/19:00337693 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/DEVLRN.2019.8850692" target="_blank" >https://doi.org/10.1109/DEVLRN.2019.8850692</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DEVLRN.2019.8850692" target="_blank" >10.1109/DEVLRN.2019.8850692</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling self-organized emergence of perspective in/variant mirror neurons in a robotic system
Popis výsledku v původním jazyce
A major role attributed to mirror neurons, according to the direct matching hypothesis, is to mediate the link between an observed action and agent's own motor repertoire, to provide understanding STS from inside. The mirror neurons gave rise to various models but one of the issues not tackled by them is the perspective in/variance. Neurons in STS visual areas can be either perspective selective or invariant and the same variability was later also discovered in premotor F5 area in macaques, showing the existence of different types of mirror neurons regarding their perspective selectivity. We model this as an emergent phenomenom using the data from the simulated iCub robot, that learns to reach for objects with three types of grasp. The neural network model learns in two phases. First, the motor (F5) and visual (STS) modules are trained in parallel to self-organize modal maps using the corresponding data sequences from the self-perspective. Then, F5 area is retrained using the output from the pretrained STS module, to acquire the mirroring property. Using the optimized model hyperparameters found by grid search, we show that our model fits very well empirical observations, by showing how neurons with various degrees of perspective selectivity emerge in the F5 map.
Název v anglickém jazyce
Modeling self-organized emergence of perspective in/variant mirror neurons in a robotic system
Popis výsledku anglicky
A major role attributed to mirror neurons, according to the direct matching hypothesis, is to mediate the link between an observed action and agent's own motor repertoire, to provide understanding STS from inside. The mirror neurons gave rise to various models but one of the issues not tackled by them is the perspective in/variance. Neurons in STS visual areas can be either perspective selective or invariant and the same variability was later also discovered in premotor F5 area in macaques, showing the existence of different types of mirror neurons regarding their perspective selectivity. We model this as an emergent phenomenom using the data from the simulated iCub robot, that learns to reach for objects with three types of grasp. The neural network model learns in two phases. First, the motor (F5) and visual (STS) modules are trained in parallel to self-organize modal maps using the corresponding data sequences from the self-perspective. Then, F5 area is retrained using the output from the pretrained STS module, to acquire the mirroring property. Using the optimized model hyperparameters found by grid search, we show that our model fits very well empirical observations, by showing how neurons with various degrees of perspective selectivity emerge in the F5 map.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20172019082" target="_blank" >VI20172019082: Smart Camera - Dohledové centrum nové generace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)
ISBN
978-1-5386-8128-2
ISSN
2161-9484
e-ISSN
2161-9484
Počet stran výsledku
6
Strana od-do
278-283
Název nakladatele
IEEE
Místo vydání
Anchorage, Alaska
Místo konání akce
Oslo
Datum konání akce
19. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000564518200042