Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The analysis of records of discrete events

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00341068" target="_blank" >RIV/68407700:21730/19:00341068 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.ciirc.cvut.cz/cs/research-education/past-projects/damias/#sw1" target="_blank" >https://www.ciirc.cvut.cz/cs/research-education/past-projects/damias/#sw1</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The analysis of records of discrete events

  • Popis výsledku v původním jazyce

    The analysis is based on the search for a pattern of data obtained from a production process record, with data representing discrete events such as product creation, machine startup, processing error, etc. It is assumed that individual machines are involved in the production process (assets) and that the data obtained comes from many consecutive production runs. Realized result enables to search in the data frequent repeating patterns on individual machines. The patterns are subsequently hierarchically assigned across machine groups. As a result, information can beobtained from the data on which machines are involved in a single operation without any knowledge of the structure of the production line and the production process. The advantage of the algorithm is its linear complexity with respect to the length of the input sequence. The analysis results in a set of identified partial sequences. These are the sequences that have the highest score during detection, which is typically the coverage of the input sequence and the frequency of occurrence. Such sequences represent individual manufacturing or assembly recipes / manufacturing processes. Each sequence, or identified process, is described by statistical distribution and characteristics such as the mean duration value, the duration variance, and the start time variance of the sequence relative to the beginning of the entire production cycle. Based on these statistical parameters, it is possible to look for anomalies in the data, which may indicate an emerging or already existing error in the production process.

  • Název v anglickém jazyce

    The analysis of records of discrete events

  • Popis výsledku anglicky

    The analysis is based on the search for a pattern of data obtained from a production process record, with data representing discrete events such as product creation, machine startup, processing error, etc. It is assumed that individual machines are involved in the production process (assets) and that the data obtained comes from many consecutive production runs. Realized result enables to search in the data frequent repeating patterns on individual machines. The patterns are subsequently hierarchically assigned across machine groups. As a result, information can beobtained from the data on which machines are involved in a single operation without any knowledge of the structure of the production line and the production process. The advantage of the algorithm is its linear complexity with respect to the length of the input sequence. The analysis results in a set of identified partial sequences. These are the sequences that have the highest score during detection, which is typically the coverage of the input sequence and the frequency of occurrence. Such sequences represent individual manufacturing or assembly recipes / manufacturing processes. Each sequence, or identified process, is described by statistical distribution and characteristics such as the mean duration value, the duration variance, and the start time variance of the sequence relative to the beginning of the entire production cycle. Based on these statistical parameters, it is possible to look for anomalies in the data, which may indicate an emerging or already existing error in the production process.

Klasifikace

  • Druh

    R - Software

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TF04000054" target="_blank" >TF04000054: DAMiAS - Datově řízená správa zařízení v automobilovém průmyslu založená na sémantickém modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Interní identifikační kód produktu

    TF04000054

  • Technické parametry

    set of Python libraries implementing the analysis Smlouva o využití výsledků projektu číslo TF04000054 s Factorio Solutions, s.r.o., se sídlem: U Louže 575, 25067 Klecany, Česká republika, IČO: 02673975, ze dne 30.1.2020 Odpovědná osoba za ČVUT, CIIRC je Ing. Pavel Burget, Ph.D.

  • Ekonomické parametry

    0,5 – 1 mil. Kč

  • IČO vlastníka výsledku

    68407700

  • Název vlastníka

    Český institut informatiky, robotiky a kybernetiky