A NOVEL METHOD FOR STATISTICAL PATTERN RECOGNITION USING THE NETWORK THEORY AND A NEW HYBRID SYSTEM OF MACHINE LEARNING
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00357261" target="_blank" >RIV/68407700:21730/19:00357261 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17222/mit.2018.116" target="_blank" >https://doi.org/10.17222/mit.2018.116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17222/mit.2018.116" target="_blank" >10.17222/mit.2018.116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A NOVEL METHOD FOR STATISTICAL PATTERN RECOGNITION USING THE NETWORK THEORY AND A NEW HYBRID SYSTEM OF MACHINE LEARNING
Popis výsledku v původním jazyce
The increase in wear resistance of cast irons after laser treatment is due not only to the corresponding structural and phase composition, but also to the improvement in the friction conditions due to the graphite retained in the laser impact zone. Also, laser hardening increases the wear resistance of steels and some other alloys in terms of the friction in alkaline and acidic environments. In this article we present a new method for a hybrid system of machine learning using a new method for statistical pattern recognition through network theory in robot laser hardening (RLH). We combined the method of multiple regression, the method of a support vector machine and the method of a neural network. For statistical pattern recognition we use the topological properties of network theory. The even distribution of the topological property 16-300 triads throughout the various levels of the organization and network in the microstructure of RLH indicates that there is a strong linkage across the network and an active connection among the needles of martensite.
Název v anglickém jazyce
A NOVEL METHOD FOR STATISTICAL PATTERN RECOGNITION USING THE NETWORK THEORY AND A NEW HYBRID SYSTEM OF MACHINE LEARNING
Popis výsledku anglicky
The increase in wear resistance of cast irons after laser treatment is due not only to the corresponding structural and phase composition, but also to the improvement in the friction conditions due to the graphite retained in the laser impact zone. Also, laser hardening increases the wear resistance of steels and some other alloys in terms of the friction in alkaline and acidic environments. In this article we present a new method for a hybrid system of machine learning using a new method for statistical pattern recognition through network theory in robot laser hardening (RLH). We combined the method of multiple regression, the method of a support vector machine and the method of a neural network. For statistical pattern recognition we use the topological properties of network theory. The even distribution of the topological property 16-300 triads throughout the various levels of the organization and network in the microstructure of RLH indicates that there is a strong linkage across the network and an active connection among the needles of martensite.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials and Technology
ISSN
1580-2949
e-ISSN
1580-3414
Svazek periodika
53
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
6
Strana od-do
95-100
Kód UT WoS článku
000458523900014
EID výsledku v databázi Scopus
2-s2.0-85064190935