Exquisitor at the Video Browser Showdown 2020
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00344442" target="_blank" >RIV/68407700:21730/20:00344442 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-37734-2_72" target="_blank" >https://doi.org/10.1007/978-3-030-37734-2_72</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-37734-2_72" target="_blank" >10.1007/978-3-030-37734-2_72</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exquisitor at the Video Browser Showdown 2020
Popis výsledku v původním jazyce
When browsing large video collections, human-in-the-loop systems are essential. The system should understand the semantic information need of the user and interactively help formulate queries to satisfy that information need based on data-driven methods. Full synergy between the interacting user and the system can only be obtained when the system learns from the user interactions while providing immediate response. Doing so with dynamically changing information needs for large scale multimodal collections is a challenging task. To push the boundary of current methods, we propose to apply the state of the art in interactive multimodal learning to the complex multimodal information needs posed by the Video Browser Showdown (VBS). To that end we adapt the Exquisitor system, a highly scalable interactive learning system. Exquisitor combines semantic features extracted from visual content and text to suggest relevant media items to the user, based on user relevance feedback on previously suggested items. In this paper, we briefly describe the Exquisitor system, and its first incarnation as a VBS entrant.
Název v anglickém jazyce
Exquisitor at the Video Browser Showdown 2020
Popis výsledku anglicky
When browsing large video collections, human-in-the-loop systems are essential. The system should understand the semantic information need of the user and interactively help formulate queries to satisfy that information need based on data-driven methods. Full synergy between the interacting user and the system can only be obtained when the system learns from the user interactions while providing immediate response. Doing so with dynamically changing information needs for large scale multimodal collections is a challenging task. To push the boundary of current methods, we propose to apply the state of the art in interactive multimodal learning to the complex multimodal information needs posed by the Video Browser Showdown (VBS). To that end we adapt the Exquisitor system, a highly scalable interactive learning system. Exquisitor combines semantic features extracted from visual content and text to suggest relevant media items to the user, based on user relevance feedback on previously suggested items. In this paper, we briefly describe the Exquisitor system, and its first incarnation as a VBS entrant.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MultiMedia Modeling
ISBN
978-3-030-37733-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
7
Strana od-do
796-802
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Daejeon
Datum konání akce
5. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000611566100072