Property Invariant Embedding for Automated Reasoning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00346155" target="_blank" >RIV/68407700:21730/20:00346155 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3233/FAIA200244" target="_blank" >https://doi.org/10.3233/FAIA200244</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA200244" target="_blank" >10.3233/FAIA200244</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Property Invariant Embedding for Automated Reasoning
Popis výsledku v původním jazyce
Automated reasoning and theorem proving have recently become major challenges for machine learning. In other domains, representations that are able to abstract over unimportant transformations, such as abstraction over translations and rotations in vision, are becoming more common. Standard methods of embedding mathematical formulas for learning theorem proving are however yet unable to handle many important transformations. In particular, embedding previously unseen labels, that often arise in definitional encodings and in Skolemization, has been very weak so far. Similar problems appear when transferring knowledge between known symbols. We propose a novel encoding of formulas that extends existing graph neural network models. This encoding represents symbols only by nodes in the graph, without giving the network any knowledge of the original labels. We provide additional links between such nodes that allow the network to recover the meaning and therefore correctly embed such nodes irrespective of the given labels. We test the proposed encoding in an automated theorem prover based on the tableaux connection calculus, and show that it improves on the best characterizations used so far. The encoding is further evaluated on the premise selection task and a newly introduced symbol guessing task, and shown to correctly predict 65% of the symbol names.
Název v anglickém jazyce
Property Invariant Embedding for Automated Reasoning
Popis výsledku anglicky
Automated reasoning and theorem proving have recently become major challenges for machine learning. In other domains, representations that are able to abstract over unimportant transformations, such as abstraction over translations and rotations in vision, are becoming more common. Standard methods of embedding mathematical formulas for learning theorem proving are however yet unable to handle many important transformations. In particular, embedding previously unseen labels, that often arise in definitional encodings and in Skolemization, has been very weak so far. Similar problems appear when transferring knowledge between known symbols. We propose a novel encoding of formulas that extends existing graph neural network models. This encoding represents symbols only by nodes in the graph, without giving the network any knowledge of the original labels. We provide additional links between such nodes that allow the network to recover the meaning and therefore correctly embed such nodes irrespective of the given labels. We test the proposed encoding in an automated theorem prover based on the tableaux connection calculus, and show that it improves on the best characterizations used so far. The encoding is further evaluated on the premise selection task and a newly introduced symbol guessing task, and shown to correctly predict 65% of the symbol names.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020)
ISBN
978-1-64368-100-9
ISSN
0922-6389
e-ISSN
1879-8314
Počet stran výsledku
8
Strana od-do
1395-1402
Název nakladatele
IOS Press
Místo vydání
Oxford
Místo konání akce
Virtual online
Datum konání akce
29. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000650971301082