PL1 P - Point-Line Minimal Problems Under Partial Visibility in Three Views
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347760" target="_blank" >RIV/68407700:21730/20:00347760 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-58574-7_11" target="_blank" >https://doi.org/10.1007/978-3-030-58574-7_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-58574-7_11" target="_blank" >10.1007/978-3-030-58574-7_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PL1 P - Point-Line Minimal Problems Under Partial Visibility in Three Views
Popis výsledku v původním jazyce
We present a complete classification of minimal problems for generic arrangements of points and lines in space observed partially by three calibrated perspective cameras when each line is incident to at most one point. This is a large class of interesting minimal problems that allows missing observations in images due to occlusions and missed detections. There is an infinite number of such minimal problems; however, we show that they can be reduced to 140616 equivalence classes by removing superfluous features and relabeling the cameras. We also introduce camera-minimal problems, which are practical for designing minimal solvers, and show how to pick a simplest camera-minimal problem for each minimal problem. This simplification results in 74575 equivalence classes. Only 76 of these were known; the rest are new. To identify problems having potential for practical solving of image matching and 3D reconstruction, we present several natural subfamilies of camera-minimal problems as well as compute solution counts for all camera-minimal problems which have less than 300 solutions for generic data.
Název v anglickém jazyce
PL1 P - Point-Line Minimal Problems Under Partial Visibility in Three Views
Popis výsledku anglicky
We present a complete classification of minimal problems for generic arrangements of points and lines in space observed partially by three calibrated perspective cameras when each line is incident to at most one point. This is a large class of interesting minimal problems that allows missing observations in images due to occlusions and missed detections. There is an infinite number of such minimal problems; however, we show that they can be reduced to 140616 equivalence classes by removing superfluous features and relabeling the cameras. We also introduce camera-minimal problems, which are practical for designing minimal solvers, and show how to pick a simplest camera-minimal problem for each minimal problem. This simplification results in 74575 equivalence classes. Only 76 of these were known; the rest are new. To identify problems having potential for practical solving of image matching and 3D reconstruction, we present several natural subfamilies of camera-minimal problems as well as compute solution counts for all camera-minimal problems which have less than 300 solutions for generic data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Vision - ECCV 2020, Part XXVI
ISBN
978-3-030-58573-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
18
Strana od-do
175-192
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Glasgow
Datum konání akce
23. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—