Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient Neighbourhood Consensus Networks via Submanifold Sparse Convolutions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347821" target="_blank" >RIV/68407700:21730/20:00347821 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.springerprofessional.de/en/efficient-neighbourhood-consensus-networks-via-submanifold-spars/18555516" target="_blank" >https://www.springerprofessional.de/en/efficient-neighbourhood-consensus-networks-via-submanifold-spars/18555516</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-58545-7_35" target="_blank" >10.1007/978-3-030-58545-7_35</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient Neighbourhood Consensus Networks via Submanifold Sparse Convolutions

  • Popis výsledku v původním jazyce

    In this work we target the problem of estimating accurately localized correspondences between a pair of images. We adopt the recent Neighbourhood Consensus Networks that have demonstrated promising performance for difficult correspondence problems and propose modifications to overcome their main limitations: large memory consumption, large inference time and poorly localized correspondences. Our proposed modifications can reduce the memory footprint and execution time more than 10x, with equivalent results. This is achieved by sparsifying the correlation tensor containing tentative matches, and its subsequent processing with a 4D CNN using submanifold sparse convolutions. localization accuracy is significantly improved by processing the input images in higher resolution, which is possible due to the reduced memory footprint, and by a novel two-stage correspondence relocalization module. The proposed Sparse-NCNet method obtains state-of-the-art results on the HPatches Sequences and InLoc visual localization benchmarks, and competitive results on the Aachen Day-Night benchmark.

  • Název v anglickém jazyce

    Efficient Neighbourhood Consensus Networks via Submanifold Sparse Convolutions

  • Popis výsledku anglicky

    In this work we target the problem of estimating accurately localized correspondences between a pair of images. We adopt the recent Neighbourhood Consensus Networks that have demonstrated promising performance for difficult correspondence problems and propose modifications to overcome their main limitations: large memory consumption, large inference time and poorly localized correspondences. Our proposed modifications can reduce the memory footprint and execution time more than 10x, with equivalent results. This is achieved by sparsifying the correlation tensor containing tentative matches, and its subsequent processing with a 4D CNN using submanifold sparse convolutions. localization accuracy is significantly improved by processing the input images in higher resolution, which is possible due to the reduced memory footprint, and by a novel two-stage correspondence relocalization module. The proposed Sparse-NCNet method obtains state-of-the-art results on the HPatches Sequences and InLoc visual localization benchmarks, and competitive results on the Aachen Day-Night benchmark.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computer Vision – ECCV 2020, part IX

  • ISBN

    978-3-030-58544-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    17

  • Strana od-do

    605-621

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Glasgow

  • Datum konání akce

    23. 8. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku