Bilinear Image Translation for Temporal Analysis of Photo Collections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00340392" target="_blank" >RIV/68407700:21730/21:00340392 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TPAMI.2019.2950317" target="_blank" >https://doi.org/10.1109/TPAMI.2019.2950317</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2019.2950317" target="_blank" >10.1109/TPAMI.2019.2950317</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bilinear Image Translation for Temporal Analysis of Photo Collections
Popis výsledku v původním jazyce
We propose an approach for analyzing unpaired visual data annotated with timestamps by generating how images would have looked like if they were from different times. To isolate and transfer time-dependent appearance variations, we introduce a new trainable bilinear factor separation module. We analyze its relation to classical factored representations and concatenation-based auto-encoders. We demonstrate this new module has clear advantages compared to standard concatenation when used in a bottleneck encoder-decoder convolutional neural network architecture. We also show that it can be inserted in a recent adversarial image translation architecture, enabling transfer to multiple different target time periods using a single network. We apply our model to a challenging collection of more than 13,000 cars manufactured between 1920 and 2000 and a dataset of high school yearbook portraits from 1930 to 2009. This allows us, for a given new input image, to generate a "history-lapse video" revealing changes over time by simply varying the latent variable corresponding to time. We show that by analyzing the generated history-lapse videos we can identify object deformations across time, extracting interesting changes in visual style over decades.
Název v anglickém jazyce
Bilinear Image Translation for Temporal Analysis of Photo Collections
Popis výsledku anglicky
We propose an approach for analyzing unpaired visual data annotated with timestamps by generating how images would have looked like if they were from different times. To isolate and transfer time-dependent appearance variations, we introduce a new trainable bilinear factor separation module. We analyze its relation to classical factored representations and concatenation-based auto-encoders. We demonstrate this new module has clear advantages compared to standard concatenation when used in a bottleneck encoder-decoder convolutional neural network architecture. We also show that it can be inserted in a recent adversarial image translation architecture, enabling transfer to multiple different target time periods using a single network. We apply our model to a challenging collection of more than 13,000 cars manufactured between 1920 and 2000 and a dataset of high school yearbook portraits from 1930 to 2009. This allows us, for a given new input image, to generate a "history-lapse video" revealing changes over time by simply varying the latent variable corresponding to time. We show that by analyzing the generated history-lapse videos we can identify object deformations across time, extracting interesting changes in visual style over decades.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
1939-3539
Svazek periodika
43
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1197-1212
Kód UT WoS článku
000626525300007
EID výsledku v databázi Scopus
2-s2.0-85102238237