Control of Magnetic Manipulator Using Reinforcement Learning Based on Incrementally Adapted Local Linear Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00353630" target="_blank" >RIV/68407700:21730/21:00353630 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/21:PU144837
Výsledek na webu
<a href="https://doi.org/10.1155/2021/6617309" target="_blank" >https://doi.org/10.1155/2021/6617309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2021/6617309" target="_blank" >10.1155/2021/6617309</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Control of Magnetic Manipulator Using Reinforcement Learning Based on Incrementally Adapted Local Linear Models
Popis výsledku v původním jazyce
Reinforcement learning (RL) agents can learn to control a nonlinear system without using a model of the system. However, having a model brings benefits, mainly in terms of a reduced number of unsuccessful trials before achieving acceptable control performance. Several modelling approaches have been used in the RL domain, such as neural networks, local linear regression, or Gaussian processes. In this article, we focus on techniques that have not been used much so far: symbolic regression (SR), based on genetic programming and local modelling. Using measured data, symbolic regression yields a nonlinear, continuous-time analytic model. We benchmark two state-of-the-art methods, SNGP (single-node genetic programming) and MGGP (multigene genetic programming), against a standard incremental local regression method called RFWR (receptive field weighted regression). We have introduced modifications to the RFWR algorithm to better suit the low-dimensional continuous-time systems we are mostly dealing with. The benchmark is a nonlinear, dynamic magnetic manipulation system. The results show that using the RL framework and a suitable approximation method, it is possible to design a stable controller of such a complex system without the necessity of any haphazard learning. While all of the approximation methods were successful, MGGP achieved the best results at the cost of higher computational complexity. Index Terms–AI-based methods, local linear regression, nonlinear systems, magnetic manipulation, model learning for control, optimal control, reinforcement learning, symbolic regression.
Název v anglickém jazyce
Control of Magnetic Manipulator Using Reinforcement Learning Based on Incrementally Adapted Local Linear Models
Popis výsledku anglicky
Reinforcement learning (RL) agents can learn to control a nonlinear system without using a model of the system. However, having a model brings benefits, mainly in terms of a reduced number of unsuccessful trials before achieving acceptable control performance. Several modelling approaches have been used in the RL domain, such as neural networks, local linear regression, or Gaussian processes. In this article, we focus on techniques that have not been used much so far: symbolic regression (SR), based on genetic programming and local modelling. Using measured data, symbolic regression yields a nonlinear, continuous-time analytic model. We benchmark two state-of-the-art methods, SNGP (single-node genetic programming) and MGGP (multigene genetic programming), against a standard incremental local regression method called RFWR (receptive field weighted regression). We have introduced modifications to the RFWR algorithm to better suit the low-dimensional continuous-time systems we are mostly dealing with. The benchmark is a nonlinear, dynamic magnetic manipulation system. The results show that using the RL framework and a suitable approximation method, it is possible to design a stable controller of such a complex system without the necessity of any haphazard learning. While all of the approximation methods were successful, MGGP achieved the best results at the cost of higher computational complexity. Index Terms–AI-based methods, local linear regression, nonlinear systems, magnetic manipulation, model learning for control, optimal control, reinforcement learning, symbolic regression.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Complexity
ISSN
1076-2787
e-ISSN
1099-0526
Svazek periodika
2021
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85122754808