Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Control of Magnetic Manipulator Using Reinforcement Learning Based on Incrementally Adapted Local Linear Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00353630" target="_blank" >RIV/68407700:21730/21:00353630 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26210/21:PU144837

  • Výsledek na webu

    <a href="https://doi.org/10.1155/2021/6617309" target="_blank" >https://doi.org/10.1155/2021/6617309</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2021/6617309" target="_blank" >10.1155/2021/6617309</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Control of Magnetic Manipulator Using Reinforcement Learning Based on Incrementally Adapted Local Linear Models

  • Popis výsledku v původním jazyce

    Reinforcement learning (RL) agents can learn to control a nonlinear system without using a model of the system. However, having a model brings benefits, mainly in terms of a reduced number of unsuccessful trials before achieving acceptable control performance. Several modelling approaches have been used in the RL domain, such as neural networks, local linear regression, or Gaussian processes. In this article, we focus on techniques that have not been used much so far: symbolic regression (SR), based on genetic programming and local modelling. Using measured data, symbolic regression yields a nonlinear, continuous-time analytic model. We benchmark two state-of-the-art methods, SNGP (single-node genetic programming) and MGGP (multigene genetic programming), against a standard incremental local regression method called RFWR (receptive field weighted regression). We have introduced modifications to the RFWR algorithm to better suit the low-dimensional continuous-time systems we are mostly dealing with. The benchmark is a nonlinear, dynamic magnetic manipulation system. The results show that using the RL framework and a suitable approximation method, it is possible to design a stable controller of such a complex system without the necessity of any haphazard learning. While all of the approximation methods were successful, MGGP achieved the best results at the cost of higher computational complexity. Index Terms–AI-based methods, local linear regression, nonlinear systems, magnetic manipulation, model learning for control, optimal control, reinforcement learning, symbolic regression.

  • Název v anglickém jazyce

    Control of Magnetic Manipulator Using Reinforcement Learning Based on Incrementally Adapted Local Linear Models

  • Popis výsledku anglicky

    Reinforcement learning (RL) agents can learn to control a nonlinear system without using a model of the system. However, having a model brings benefits, mainly in terms of a reduced number of unsuccessful trials before achieving acceptable control performance. Several modelling approaches have been used in the RL domain, such as neural networks, local linear regression, or Gaussian processes. In this article, we focus on techniques that have not been used much so far: symbolic regression (SR), based on genetic programming and local modelling. Using measured data, symbolic regression yields a nonlinear, continuous-time analytic model. We benchmark two state-of-the-art methods, SNGP (single-node genetic programming) and MGGP (multigene genetic programming), against a standard incremental local regression method called RFWR (receptive field weighted regression). We have introduced modifications to the RFWR algorithm to better suit the low-dimensional continuous-time systems we are mostly dealing with. The benchmark is a nonlinear, dynamic magnetic manipulation system. The results show that using the RL framework and a suitable approximation method, it is possible to design a stable controller of such a complex system without the necessity of any haphazard learning. While all of the approximation methods were successful, MGGP achieved the best results at the cost of higher computational complexity. Index Terms–AI-based methods, local linear regression, nonlinear systems, magnetic manipulation, model learning for control, optimal control, reinforcement learning, symbolic regression.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Complexity

  • ISSN

    1076-2787

  • e-ISSN

    1099-0526

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85122754808