MyGym: Modular Toolkit for Visuomotor Robotic Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354192" target="_blank" >RIV/68407700:21730/21:00354192 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICTAI52525.2021.00046" target="_blank" >https://doi.org/10.1109/ICTAI52525.2021.00046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTAI52525.2021.00046" target="_blank" >10.1109/ICTAI52525.2021.00046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MyGym: Modular Toolkit for Visuomotor Robotic Tasks
Popis výsledku v původním jazyce
We introduce myGym, a toolkit suitable for fast prototyping of neural networks in the area of robotic manipulation and navigation. Our toolbox is fully modular, enabling users to train their algorithms on different robots, environments, and tasks. We also include pretrained neural network modules for the real-time vision that allows training visuomotor tasks with sim2real transfer. The visual modules can be easily retrained using the dataset generation pipeline with domain augmentation and randomization. Moreover, myGym provides automatic evaluation methods and baselines that help the user to directly compare their trained model with the state-of-the-art algorithms. We additionally present a novel metric, called learnability, to compare the general learning capability of algorithms in different settings, where the complexity of the environment, robot, and the task is systematically manipulated. The learnability score tracks differences between the performance of algorithms in increasingly challenging setup conditions, and thus allows the user to compare different models in a more systematic fashion. The code is accessible at https://github.com/incognite-lab/myGym
Název v anglickém jazyce
MyGym: Modular Toolkit for Visuomotor Robotic Tasks
Popis výsledku anglicky
We introduce myGym, a toolkit suitable for fast prototyping of neural networks in the area of robotic manipulation and navigation. Our toolbox is fully modular, enabling users to train their algorithms on different robots, environments, and tasks. We also include pretrained neural network modules for the real-time vision that allows training visuomotor tasks with sim2real transfer. The visual modules can be easily retrained using the dataset generation pipeline with domain augmentation and randomization. Moreover, myGym provides automatic evaluation methods and baselines that help the user to directly compare their trained model with the state-of-the-art algorithms. We additionally present a novel metric, called learnability, to compare the general learning capability of algorithms in different settings, where the complexity of the environment, robot, and the task is systematically manipulated. The learnability score tracks differences between the performance of algorithms in increasingly challenging setup conditions, and thus allows the user to compare different models in a more systematic fashion. The code is accessible at https://github.com/incognite-lab/myGym
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Inženýrské aplikace fyziky mikrosvěta</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)
ISBN
978-1-6654-0898-1
ISSN
1082-3409
e-ISSN
2375-0197
Počet stran výsledku
5
Strana od-do
279-283
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Washington
Datum konání akce
1. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000747482300038