The Role of Entropy in Guiding a Connection Prover
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354436" target="_blank" >RIV/68407700:21730/21:00354436 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-86059-2_13" target="_blank" >https://doi.org/10.1007/978-3-030-86059-2_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-86059-2_13" target="_blank" >10.1007/978-3-030-86059-2_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Role of Entropy in Guiding a Connection Prover
Popis výsledku v původním jazyce
In this work we study how to learn good algorithms for selecting reasoning steps in theorem proving. We explore this in the connection tableau calculus implemented by leanCoP where the partial tableau provides a clean and compact notion of a state to which a limited number of inferences can be applied. We start by incorporating a state-of-the-art learning algorithm — a graph neural network (GNN) – into the plCoP theorem prover. Then we use it to observe the system’s behavior in a reinforcement learning setting, i.e., when learning inference guidance from successful Monte-Carlo tree searches on many problems. Despite its better pattern matching capability, the GNN initially performs worse than a simpler previously used learning algorithm. We observe that the simpler algorithm is less confident, i.e., its recommendations have higher entropy. This leads us to explore how the entropy of the inference selection implemented via the neural network influences the proof search. This is related to research in human decision-making under uncertainty, and in particular the probability matching theory. Our main result shows that a proper entropy regularization, i.e., training the GNN not to be overconfident, greatly improves plCoP ’s performance on a large mathematical corpus.
Název v anglickém jazyce
The Role of Entropy in Guiding a Connection Prover
Popis výsledku anglicky
In this work we study how to learn good algorithms for selecting reasoning steps in theorem proving. We explore this in the connection tableau calculus implemented by leanCoP where the partial tableau provides a clean and compact notion of a state to which a limited number of inferences can be applied. We start by incorporating a state-of-the-art learning algorithm — a graph neural network (GNN) – into the plCoP theorem prover. Then we use it to observe the system’s behavior in a reinforcement learning setting, i.e., when learning inference guidance from successful Monte-Carlo tree searches on many problems. Despite its better pattern matching capability, the GNN initially performs worse than a simpler previously used learning algorithm. We observe that the simpler algorithm is less confident, i.e., its recommendations have higher entropy. This leads us to explore how the entropy of the inference selection implemented via the neural network influences the proof search. This is related to research in human decision-making under uncertainty, and in particular the probability matching theory. Our main result shows that a proper entropy regularization, i.e., training the GNN not to be overconfident, greatly improves plCoP ’s performance on a large mathematical corpus.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Automated Reasoning with Analytic Tableaux and Related Methods
ISBN
978-3-030-86058-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
18
Strana od-do
218-235
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Birmingham
Datum konání akce
6. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000711656700013