Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Big Data Needs and Challenges in Smart Manufacturing: An Industry-Academia Survey

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354568" target="_blank" >RIV/68407700:21730/21:00354568 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ETFA45728.2021.9613600" target="_blank" >https://doi.org/10.1109/ETFA45728.2021.9613600</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ETFA45728.2021.9613600" target="_blank" >10.1109/ETFA45728.2021.9613600</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Big Data Needs and Challenges in Smart Manufacturing: An Industry-Academia Survey

  • Popis výsledku v původním jazyce

    The increasing availability of data in Smart Manufacturing opens new challenges and required capabilities in the area of big data in industry and academia. Various organizations have started initiatives to collect and analyse data in their individual contexts with specific goals, e.g., for monitoring, optimization, or decision support in order to reduce risks and costs in their manufacturing systems. However, the variety of available application areas require to focus on most promising activities. Therefore, we see the need for investigating common challenges and priorities in academia and industry from expert and management perspective to identify the state of the practice and promising application areas for driving future research directions. The goal of this paper is to report on an industry-academia survey to capture the current state of the art, required capabilities and priorities in the area of big data applications. Therefore, we conducted a survey in winter 2020/21 in industry and academia. We received 22 responses from different application domains highlighting the need for supporting (a) fault detection and (b) fault classification based on (c) historical and (d) real-time data analysis concepts. Therefore, the survey results reveals current and upcoming challenges in big data applications, such as defect handling based on historical and real-time data.

  • Název v anglickém jazyce

    Big Data Needs and Challenges in Smart Manufacturing: An Industry-Academia Survey

  • Popis výsledku anglicky

    The increasing availability of data in Smart Manufacturing opens new challenges and required capabilities in the area of big data in industry and academia. Various organizations have started initiatives to collect and analyse data in their individual contexts with specific goals, e.g., for monitoring, optimization, or decision support in order to reduce risks and costs in their manufacturing systems. However, the variety of available application areas require to focus on most promising activities. Therefore, we see the need for investigating common challenges and priorities in academia and industry from expert and management perspective to identify the state of the practice and promising application areas for driving future research directions. The goal of this paper is to report on an industry-academia survey to capture the current state of the art, required capabilities and priorities in the area of big data applications. Therefore, we conducted a survey in winter 2020/21 in industry and academia. We received 22 responses from different application domains highlighting the need for supporting (a) fault detection and (b) fault classification based on (c) historical and (d) real-time data analysis concepts. Therefore, the survey results reveals current and upcoming challenges in big data applications, such as defect handling based on historical and real-time data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008432" target="_blank" >EF16_026/0008432: Klastr 4.0 - Metodologie systémové integrace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )

  • ISBN

    978-1-7281-2989-1

  • ISSN

    1946-0740

  • e-ISSN

    1946-0759

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    IEEE Industrial Electronic Society

  • Místo vydání

    Vienna

  • Místo konání akce

    Västerås

  • Datum konání akce

    7. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000766992600195