Big Data Needs and Challenges in Smart Manufacturing: An Industry-Academia Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354568" target="_blank" >RIV/68407700:21730/21:00354568 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ETFA45728.2021.9613600" target="_blank" >https://doi.org/10.1109/ETFA45728.2021.9613600</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ETFA45728.2021.9613600" target="_blank" >10.1109/ETFA45728.2021.9613600</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Big Data Needs and Challenges in Smart Manufacturing: An Industry-Academia Survey
Popis výsledku v původním jazyce
The increasing availability of data in Smart Manufacturing opens new challenges and required capabilities in the area of big data in industry and academia. Various organizations have started initiatives to collect and analyse data in their individual contexts with specific goals, e.g., for monitoring, optimization, or decision support in order to reduce risks and costs in their manufacturing systems. However, the variety of available application areas require to focus on most promising activities. Therefore, we see the need for investigating common challenges and priorities in academia and industry from expert and management perspective to identify the state of the practice and promising application areas for driving future research directions. The goal of this paper is to report on an industry-academia survey to capture the current state of the art, required capabilities and priorities in the area of big data applications. Therefore, we conducted a survey in winter 2020/21 in industry and academia. We received 22 responses from different application domains highlighting the need for supporting (a) fault detection and (b) fault classification based on (c) historical and (d) real-time data analysis concepts. Therefore, the survey results reveals current and upcoming challenges in big data applications, such as defect handling based on historical and real-time data.
Název v anglickém jazyce
Big Data Needs and Challenges in Smart Manufacturing: An Industry-Academia Survey
Popis výsledku anglicky
The increasing availability of data in Smart Manufacturing opens new challenges and required capabilities in the area of big data in industry and academia. Various organizations have started initiatives to collect and analyse data in their individual contexts with specific goals, e.g., for monitoring, optimization, or decision support in order to reduce risks and costs in their manufacturing systems. However, the variety of available application areas require to focus on most promising activities. Therefore, we see the need for investigating common challenges and priorities in academia and industry from expert and management perspective to identify the state of the practice and promising application areas for driving future research directions. The goal of this paper is to report on an industry-academia survey to capture the current state of the art, required capabilities and priorities in the area of big data applications. Therefore, we conducted a survey in winter 2020/21 in industry and academia. We received 22 responses from different application domains highlighting the need for supporting (a) fault detection and (b) fault classification based on (c) historical and (d) real-time data analysis concepts. Therefore, the survey results reveals current and upcoming challenges in big data applications, such as defect handling based on historical and real-time data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008432" target="_blank" >EF16_026/0008432: Klastr 4.0 - Metodologie systémové integrace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )
ISBN
978-1-7281-2989-1
ISSN
1946-0740
e-ISSN
1946-0759
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Västerås
Datum konání akce
7. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000766992600195