Patch2Pix: Epipolar-Guided Pixel-Level Correspondences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356122" target="_blank" >RIV/68407700:21730/21:00356122 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR46437.2021.00464" target="_blank" >https://doi.org/10.1109/CVPR46437.2021.00464</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR46437.2021.00464" target="_blank" >10.1109/CVPR46437.2021.00464</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences
Popis výsledku v původním jazyce
The classical matching pipeline used for visual localization typically involves three steps: (i) local feature detection and description, (ii) feature matching, and (iii) outlier rejection. Recently emerged correspondence networks propose to perform those steps inside a single network but suffer from low matching resolution due to the memory bottle-neck. In this work, we propose a new perspective to estimate correspondences in a detect-to-refine manner, where we first predict patch-level match proposals and then refine them. We present Patch2Pix, a novel refinement network that refines match proposals by regressing pixel-level matches from the local regions defined by those proposals and jointly rejecting outlier matches with confidence scores. Patch2Pix is weakly supervised to learn correspondences that are consistent with the epipolar geometry of an input image pair. We show that our refinement network significantly improves the performance of correspondence networks on image matching, homography estimation, and localization tasks. In addition, we show that our learned refinement generalizes to fully-supervised methods without retraining, which leads us to state-of-the-art localization performance.
Název v anglickém jazyce
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences
Popis výsledku anglicky
The classical matching pipeline used for visual localization typically involves three steps: (i) local feature detection and description, (ii) feature matching, and (iii) outlier rejection. Recently emerged correspondence networks propose to perform those steps inside a single network but suffer from low matching resolution due to the memory bottle-neck. In this work, we propose a new perspective to estimate correspondences in a detect-to-refine manner, where we first predict patch-level match proposals and then refine them. We present Patch2Pix, a novel refinement network that refines match proposals by regressing pixel-level matches from the local regions defined by those proposals and jointly rejecting outlier matches with confidence scores. Patch2Pix is weakly supervised to learn correspondences that are consistent with the epipolar geometry of an input image pair. We show that our refinement network significantly improves the performance of correspondence networks on image matching, homography estimation, and localization tasks. In addition, we show that our learned refinement generalizes to fully-supervised methods without retraining, which leads us to state-of-the-art localization performance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
978-1-6654-4509-2
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
4667-4676
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Nashville
Datum konání akce
20. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000739917304084