Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weakly Supervised Human-Object Interaction Detection in Video via Contrastive Spatiotemporal Regions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356152" target="_blank" >RIV/68407700:21730/21:00356152 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ICCV48922.2021.00186" target="_blank" >https://doi.org/10.1109/ICCV48922.2021.00186</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV48922.2021.00186" target="_blank" >10.1109/ICCV48922.2021.00186</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weakly Supervised Human-Object Interaction Detection in Video via Contrastive Spatiotemporal Regions

  • Popis výsledku v původním jazyce

    We introduce the task of weakly supervised learning for detecting human and object interactions in videos. Our task poses unique challenges as a system does not know what types of human-object interactions are present in a video or the actual spatiotemporal location of the human and the object. To address these challenges, we introduce a contrastive weakly supervised training loss that aims to jointly associate spatiotemporal regions in a video with an action and object vocabulary and encourage temporal continuity of the visual appearance of moving objects as a form of self-supervision. To train our model, we introduce a dataset comprising over 6.5k videos with human-object interaction annotations that have been semi-automatically curated from sentence captions associated with the videos. We demonstrate improved performance over weakly supervised baselines adapted to our task on our video dataset.

  • Název v anglickém jazyce

    Weakly Supervised Human-Object Interaction Detection in Video via Contrastive Spatiotemporal Regions

  • Popis výsledku anglicky

    We introduce the task of weakly supervised learning for detecting human and object interactions in videos. Our task poses unique challenges as a system does not know what types of human-object interactions are present in a video or the actual spatiotemporal location of the human and the object. To address these challenges, we introduce a contrastive weakly supervised training loss that aims to jointly associate spatiotemporal regions in a video with an action and object vocabulary and encourage temporal continuity of the visual appearance of moving objects as a form of self-supervision. To train our model, we introduce a dataset comprising over 6.5k videos with human-object interaction annotations that have been semi-automatically curated from sentence captions associated with the videos. We demonstrate improved performance over weakly supervised baselines adapted to our task on our video dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICCV2021: Proceedings of the International Conference on Computer Vision

  • ISBN

    978-1-6654-2812-5

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Počet stran výsledku

    11

  • Strana od-do

    1825-1835

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Montreal

  • Datum konání akce

    11. 10. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000797698902003