Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Guest Editorial: Special Issue on Performance Evaluation in Computer Vision

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00357565" target="_blank" >RIV/68407700:21730/21:00357565 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s11263-021-01455-x" target="_blank" >https://doi.org/10.1007/s11263-021-01455-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11263-021-01455-x" target="_blank" >10.1007/s11263-021-01455-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Guest Editorial: Special Issue on Performance Evaluation in Computer Vision

  • Popis výsledku v původním jazyce

    As the field of computer vision is growing and maturing, performance evaluation has become essential. Most sub-areas of computer vision now have established datasets and benchmarks allowing quantitative evaluation and comparison of current methods. In addition, new benchmarks often stimulate research into the particular challenges presented by the data. Conversely, important areas lacking high-quality datasets and benchmarks might not receive adequate attention by researchers. The deep learning revolution has made datasets and performance evaluation even more important. Learning-based methods not only require large, well-designed training datasets but also well-defined loss functions, which are usually designed to optimize established performance measures. This creates an implicit bias based on the availability of datasets and the definition of performance metrics.

  • Název v anglickém jazyce

    Guest Editorial: Special Issue on Performance Evaluation in Computer Vision

  • Popis výsledku anglicky

    As the field of computer vision is growing and maturing, performance evaluation has become essential. Most sub-areas of computer vision now have established datasets and benchmarks allowing quantitative evaluation and comparison of current methods. In addition, new benchmarks often stimulate research into the particular challenges presented by the data. Conversely, important areas lacking high-quality datasets and benchmarks might not receive adequate attention by researchers. The deep learning revolution has made datasets and performance evaluation even more important. Learning-based methods not only require large, well-designed training datasets but also well-defined loss functions, which are usually designed to optimize established performance measures. This creates an implicit bias based on the availability of datasets and the definition of performance metrics.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů