Guest Editorial: Special Issue on Performance Evaluation in Computer Vision
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00357565" target="_blank" >RIV/68407700:21730/21:00357565 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11263-021-01455-x" target="_blank" >https://doi.org/10.1007/s11263-021-01455-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11263-021-01455-x" target="_blank" >10.1007/s11263-021-01455-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Guest Editorial: Special Issue on Performance Evaluation in Computer Vision
Popis výsledku v původním jazyce
As the field of computer vision is growing and maturing, performance evaluation has become essential. Most sub-areas of computer vision now have established datasets and benchmarks allowing quantitative evaluation and comparison of current methods. In addition, new benchmarks often stimulate research into the particular challenges presented by the data. Conversely, important areas lacking high-quality datasets and benchmarks might not receive adequate attention by researchers. The deep learning revolution has made datasets and performance evaluation even more important. Learning-based methods not only require large, well-designed training datasets but also well-defined loss functions, which are usually designed to optimize established performance measures. This creates an implicit bias based on the availability of datasets and the definition of performance metrics.
Název v anglickém jazyce
Guest Editorial: Special Issue on Performance Evaluation in Computer Vision
Popis výsledku anglicky
As the field of computer vision is growing and maturing, performance evaluation has become essential. Most sub-areas of computer vision now have established datasets and benchmarks allowing quantitative evaluation and comparison of current methods. In addition, new benchmarks often stimulate research into the particular challenges presented by the data. Conversely, important areas lacking high-quality datasets and benchmarks might not receive adequate attention by researchers. The deep learning revolution has made datasets and performance evaluation even more important. Learning-based methods not only require large, well-designed training datasets but also well-defined loss functions, which are usually designed to optimize established performance measures. This creates an implicit bias based on the availability of datasets and the definition of performance metrics.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů