Adapting a Fuzzy Random Forest for Ordinal Multi-Class Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00373648" target="_blank" >RIV/68407700:21730/22:00373648 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3233/FAIA220336" target="_blank" >https://doi.org/10.3233/FAIA220336</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA220336" target="_blank" >10.3233/FAIA220336</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adapting a Fuzzy Random Forest for Ordinal Multi-Class Classification
Popis výsledku v původním jazyce
Fuzzy Random Forests are well-known Machine Learning ensemble methods. They combine the outputs of multiple Fuzzy Decision Trees to improve the classification performance. Moreover, they can deal with data uncertainty and imprecision thanks to the use of fuzzy logic. Although many classification tasks are binary, in some situations we face the problem of classifying data into a set of ordered categories. This is a particular case of multi-class classification where the order between the classes is relevant, for example in medical diagnosis to detect the severity of a disease. In this paper, we explain how a binary Fuzzy Random Forest may be adapted to deal with ordinal classification. The work is focused on the prediction stage, not on the construction of the fuzzy trees. When a new instance arrives, the rules activation is done with the usual fuzzy operators, but the aggregation of the outputs given by the different rules and trees has been redefined. In particular, we present a procedure for managing the conflicting cases where different classes are predicted with similar support. The support of the classes is calculated using the OWA operator that permits to model the concept of majority agreement.
Název v anglickém jazyce
Adapting a Fuzzy Random Forest for Ordinal Multi-Class Classification
Popis výsledku anglicky
Fuzzy Random Forests are well-known Machine Learning ensemble methods. They combine the outputs of multiple Fuzzy Decision Trees to improve the classification performance. Moreover, they can deal with data uncertainty and imprecision thanks to the use of fuzzy logic. Although many classification tasks are binary, in some situations we face the problem of classifying data into a set of ordered categories. This is a particular case of multi-class classification where the order between the classes is relevant, for example in medical diagnosis to detect the severity of a disease. In this paper, we explain how a binary Fuzzy Random Forest may be adapted to deal with ordinal classification. The work is focused on the prediction stage, not on the construction of the fuzzy trees. When a new instance arrives, the rules activation is done with the usual fuzzy operators, but the aggregation of the outputs given by the different rules and trees has been redefined. In particular, we present a procedure for managing the conflicting cases where different classes are predicted with similar support. The support of the classes is calculated using the OWA operator that permits to model the concept of majority agreement.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Intelligence Research and Development
ISBN
978-1-64368-327-0
ISSN
0922-6389
e-ISSN
1879-8314
Počet stran výsledku
10
Strana od-do
181-190
Název nakladatele
IOS Press
Místo vydání
Oxford
Místo konání akce
Sitges
Datum konání akce
19. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001176468400029