Language-Guided Music Recommendation for Video via Prompt Analogies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00372044" target="_blank" >RIV/68407700:21730/23:00372044 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR52729.2023.01420" target="_blank" >https://doi.org/10.1109/CVPR52729.2023.01420</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52729.2023.01420" target="_blank" >10.1109/CVPR52729.2023.01420</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Language-Guided Music Recommendation for Video via Prompt Analogies
Popis výsledku v původním jazyce
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the re-trieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-Music Video dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Název v anglickém jazyce
Language-Guided Music Recommendation for Video via Prompt Analogies
Popis výsledku anglicky
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the re-trieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-Music Video dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-0130-4
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
14784-14793
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Vancouver
Datum konání akce
18. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001062522107011